Project/Area Number |
18H01356
|
Research Category |
Grant-in-Aid for Scientific Research (B)
|
Allocation Type | Single-year Grants |
Section | 一般 |
Review Section |
Basic Section 18030:Design engineering-related
|
Research Institution | Kyoto University |
Principal Investigator |
|
Co-Investigator(Kenkyū-buntansha) |
野口 悠暉 東京大学, 大学院工学系研究科(工学部), 助教 (00845448)
山田 崇恭 東京大学, 大学院工学系研究科(工学部), 准教授 (30598222)
山本 崇史 工学院大学, 工学部, 教授 (30613640)
泉井 一浩 京都大学, 工学研究科, 准教授 (90314228)
|
Project Period (FY) |
2018-04-01 – 2022-03-31
|
Project Status |
Completed (Fiscal Year 2021)
|
Budget Amount *help |
¥17,420,000 (Direct Cost: ¥13,400,000、Indirect Cost: ¥4,020,000)
Fiscal Year 2021: ¥1,430,000 (Direct Cost: ¥1,100,000、Indirect Cost: ¥330,000)
Fiscal Year 2020: ¥3,900,000 (Direct Cost: ¥3,000,000、Indirect Cost: ¥900,000)
Fiscal Year 2019: ¥1,300,000 (Direct Cost: ¥1,000,000、Indirect Cost: ¥300,000)
Fiscal Year 2018: ¥10,790,000 (Direct Cost: ¥8,300,000、Indirect Cost: ¥2,490,000)
|
Keywords | 音響メタマテリアル / トポロジー最適化 / 構造創成 / 均質化法 / CAE |
Outline of Final Research Achievements |
Acoustic metamaterials are structural materials that exhibit physical properties at specific frequencies, which are not exhibited by natural materials, for acoustic propagation phenomena. Various high-performance acoustic devices such as acoustic hyperlenses, acoustic flat lenses, and acoustic waveguides can be developed using acoustic metamaterials. However, design methods for acoustic metamaterials have not yet been established. In this research, we developed a structure design method based on topology optimization in order to develop a consistent structure design method for acoustic metamaterials and device structures using such metamaterials to solve the above-mentioned problems. That is, based on the topology optimization, we developed a methodology to design metamaterial structures using a high-frequency homogenization method. we also developed a multi-scale structure design method for acoustic metamaterials and acoustic devices.
|
Academic Significance and Societal Importance of the Research Achievements |
本研究では,特異な分散特性をもつ音響メタマテリアルとその音響メタマテリアルで構成される音響デバイスを同時に設計できるマルチスケール構造最適設計法を,数学理論と数値計算理論に基づき,世界に先駆けて構築することができたことは,学術的に意義が大きい.また,この方法論により,最適なメタマテリアル構造とその最適配置による高性能な音響デバイスを設計できる.これにより高性能な音響デバイスを開発でき,産業界への貢献も期待でき,社会的意義も大きい.
|