Project/Area Number |
18H01364
|
Research Category |
Grant-in-Aid for Scientific Research (B)
|
Allocation Type | Single-year Grants |
Section | 一般 |
Review Section |
Basic Section 19010:Fluid engineering-related
|
Research Institution | Tohoku University |
Principal Investigator |
|
Co-Investigator(Kenkyū-buntansha) |
井上 元 九州大学, 工学研究院, 准教授 (40336003)
|
Project Period (FY) |
2018-04-01 – 2021-03-31
|
Project Status |
Completed (Fiscal Year 2020)
|
Budget Amount *help |
¥17,160,000 (Direct Cost: ¥13,200,000、Indirect Cost: ¥3,960,000)
Fiscal Year 2020: ¥2,730,000 (Direct Cost: ¥2,100,000、Indirect Cost: ¥630,000)
Fiscal Year 2019: ¥2,730,000 (Direct Cost: ¥2,100,000、Indirect Cost: ¥630,000)
Fiscal Year 2018: ¥11,700,000 (Direct Cost: ¥9,000,000、Indirect Cost: ¥2,700,000)
|
Keywords | 燃料電池 / 触媒層 / 分子シミュレーション / 物質輸送 / 拡散 / 分子動力学 / ナノ流体 / 拡散抵抗 / 数値解析 / プロトン輸送 / 高分子 / 多孔体 |
Outline of Final Research Achievements |
A Catalyst Layer (CL) of polymer electrolyte fuel cell is an important part whose structure determines the performance of the fuel cell, but the detail relationship between nano-mesoscale transport / structural characteristics inside the catalyst layer and the battery performance has not yet been understood. In this study, we first simulate the proton transport characteristics inside the ionomer adsorbed on the carbon surface in the catalyst layer by molecular dynamics simulation, and analyze the dependence on the water content and film thickness. Next, the result is modeled and implemented in the 3D simulator of catalyst layer performance. Using this model, the current-voltage characteristics of the catalyst layer are calculated, and the effects of nanoscale transport characteristics in ionomer and nano-meso structural characteristics of the catalyst layer on fuel cell performance are analyzed.
|
Academic Significance and Societal Importance of the Research Achievements |
この研究により、固体高分子形燃料電池の触媒層の性能と構造の関係が明らかにすることができる。これにより、今まで試行錯誤によって行われてきた触媒層の作製を理論的に、かつ数値計算を用いて行う事ができるため、実験による開発に比べて開発期間と開発コストの縮小が期待できる。その結果、固体高分子形燃料電池の低コストを実現することができるため、社会的に大きな意義をもつ研究であると言える。
|