• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Development of online method for incomplete nonlinear multiscale data analysis and its real-world applications

Research Project

Project/Area Number 18H01446
Research Category

Grant-in-Aid for Scientific Research (B)

Allocation TypeSingle-year Grants
Section一般
Review Section Basic Section 21020:Communication and network engineering-related
Research InstitutionKeio University

Principal Investigator

Yukawa Masahiro  慶應義塾大学, 理工学部(矢上), 教授 (60462743)

Co-Investigator(Kenkyū-buntansha) 山田 功  東京工業大学, 工学院, 教授 (50230446)
Project Period (FY) 2018-04-01 – 2022-03-31
Project Status Completed (Fiscal Year 2022)
Budget Amount *help
¥15,730,000 (Direct Cost: ¥12,100,000、Indirect Cost: ¥3,630,000)
Fiscal Year 2021: ¥4,160,000 (Direct Cost: ¥3,200,000、Indirect Cost: ¥960,000)
Fiscal Year 2020: ¥4,550,000 (Direct Cost: ¥3,500,000、Indirect Cost: ¥1,050,000)
Fiscal Year 2019: ¥3,770,000 (Direct Cost: ¥2,900,000、Indirect Cost: ¥870,000)
Fiscal Year 2018: ¥3,250,000 (Direct Cost: ¥2,500,000、Indirect Cost: ¥750,000)
Keywords再生核 / オンラインアルゴリズム / 凸最適化 / 多重スケール / カーネル法 / 多重スケール性 / 不完全性 / オンラインデータ解析 / グループスパース / 弱凸関数 / 頑健推定 / Moreau分解 / カーネル適応フィルタ / オンライン学習 / 弱凸正則化
Outline of Final Research Achievements

We studied mathematical modeling for expressing multiscale nonlinear data efficiently using basis functions having different scales, and the outcomes were documented in five journal articles and 10 international conference papers. As one of the main results, we developed an online algorithm which generates an efficient estimate of complex (multiscale) nonlinear function as a linear combination of Gaussian functions with different scales, where the the scale as well as the center point is adapted together with the coefficients. The algorithm can track non-stationary signals efficiently by adapting the shape of the Gaussians. The numerical examples show the efficacy of the proposed method.

Academic Significance and Societal Importance of the Research Achievements

情報通信技術や機械学習技術が用いられるシーンが急速に拡大したことに伴い、様々な環境で多種多様なデータや信号を扱う必要性が生じている。これにより、非定常性や非線形性に加えて、多重スケール性や不完全性を持つデータ・信号を取り扱える技術へのニーズが増している。本研究成果は、このニーズに応えるものになっていることに加え、時系列データ予測・解析などに応用することができるため、カルマンフィルタなどとも関連があり、隣接分野に波及していくことが見込まれる。本研究で開発した手法は、既に無線通信などに応用されており、今後、IoT・AI産業で広く用いられていくことが期待される。

Report

(5 results)
  • 2022 Final Research Report ( PDF )
  • 2021 Annual Research Report
  • 2020 Annual Research Report
  • 2019 Annual Research Report
  • 2018 Annual Research Report
  • Research Products

    (30 results)

All 2023 2022 2021 2020 2019 2018 Other

All Int'l Joint Research (5 results) Journal Article (5 results) (of which Int'l Joint Research: 2 results,  Peer Reviewed: 5 results,  Open Access: 1 results) Presentation (15 results) (of which Int'l Joint Research: 10 results) Book (1 results) Remarks (4 results)

  • [Int'l Joint Research] 南カリフォルニア大学(米国)

    • Related Report
      2021 Annual Research Report
  • [Int'l Joint Research] NCU Torun(ポーランド)

    • Related Report
      2020 Annual Research Report
  • [Int'l Joint Research] Nicolaus Copernicus University(ポーランド)

    • Related Report
      2019 Annual Research Report
  • [Int'l Joint Research] Technical University of Berlin/Fraunhofer Heinrich Hertz Institute(ドイツ)

    • Related Report
      2019 Annual Research Report
  • [Int'l Joint Research] Nicolaus Copernicus University(ポーランド)

    • Related Report
      2018 Annual Research Report
  • [Journal Article] Learning Sparse Graph with Minimax Concave Penalty under Gaussian Markov Random Fields2023

    • Author(s)
      KOYAKUMARU Tatsuya、YUKAWA Masahiro、PAVEZ Eduardo、ORTEGA Antonio
    • Journal Title

      IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences

      Volume: E106.A Issue: 1 Pages: 23-34

    • DOI

      10.1587/transfun.2021EAP1153

    • ISSN
      0916-8508, 1745-1337
    • Year and Date
      2023-01-01
    • Related Report
      2021 Annual Research Report
    • Peer Reviewed / Int'l Joint Research
  • [Journal Article] Relaxed zero-forcing beamformer under temporally-correlated interference2022

    • Author(s)
      Kono Takehiro、Yukawa Masahiro、Piotrowski Tomasz
    • Journal Title

      Signal Processing

      Volume: 190 Pages: 108323-108323

    • DOI

      10.1016/j.sigpro.2021.108323

    • Related Report
      2020 Annual Research Report
    • Peer Reviewed / Int'l Joint Research
  • [Journal Article] Joint Learning of Model Parameters and Coefficients for Online Nonlinear Estimation2021

    • Author(s)
      Masa-aki Takizawa and Masahiro Yukawa
    • Journal Title

      IEEE Access

      Volume: Vol.9 Pages: 24026-24040

    • DOI

      10.1109/access.2021.3053651

    • Related Report
      2020 Annual Research Report
    • Peer Reviewed / Open Access
  • [Journal Article] Robust Recovery of Jointly-Sparse Signals Using Minimax Concave Loss Function2021

    • Author(s)
      Suzuki Kyohei、Yukawa Masahiro
    • Journal Title

      IEEE Transactions on Signal Processing

      Volume: 69 Pages: 669-681

    • DOI

      10.1109/tsp.2020.3044445

    • Related Report
      2020 Annual Research Report
    • Peer Reviewed
  • [Journal Article] Projection-Based Regularized Dual Averaging for Stochastic Optimization2019

    • Author(s)
      Ushio Asahi、Yukawa Masahiro
    • Journal Title

      IEEE Transactions on Signal Processing

      Volume: 67 Issue: 10 Pages: 2720-2733

    • DOI

      10.1109/tsp.2019.2908901

    • Related Report
      2019 Annual Research Report
    • Peer Reviewed
  • [Presentation] An Efficient Robust Graph Learning Approach Based on Minimax Concave Penalty and γ-Cross Entropy2022

    • Author(s)
      Tatsuya Koyakumaru, Masahiro Yukawa
    • Organizer
      European Signal Processing Conference
    • Related Report
      2021 Annual Research Report
    • Int'l Joint Research
  • [Presentation] Robust jointly-sparse signal recovery based on minimax concave loss function2021

    • Author(s)
      Kyohei Suzuki and Masahiro Yukawa
    • Organizer
      European Signal Processing Conference
    • Related Report
      2020 Annual Research Report
    • Int'l Joint Research
  • [Presentation] Steepening squared error function facilitates online adaptation of Gaussian scales2020

    • Author(s)
      Masa-aki Takizawa and Masahiro Yukawa
    • Organizer
      IEEE International Conference on Acoustics, Speech, and Signal Processing
    • Related Report
      2020 Annual Research Report
    • Int'l Joint Research
  • [Presentation] Normalized least-mean-square algorithms with minimax concave penalty2020

    • Author(s)
      Hiroyuki Kaneko and and Masahiro Yukawa
    • Organizer
      IEEE International Conference on Acoustics, Speech, and Signal Processing
    • Related Report
      2020 Annual Research Report
    • Int'l Joint Research
  • [Presentation] Sentiment analysis based on multikernel adaptive filtering: an online approach to multiscale data classification2019

    • Author(s)
      Ran Iwamoto, Masahiro Yukawa
    • Organizer
      European Signal Processing Conference
    • Related Report
      2019 Annual Research Report
    • Int'l Joint Research
  • [Presentation] Online learning with self-tuned Gaussian kernels: good kernel-initialization by multiscale screening2019

    • Author(s)
      Masaaki Takizawa and Masahiro Yukawa
    • Organizer
      IEEE International Conference on Acoustic, Speech, and Signal Processing
    • Related Report
      2019 Annual Research Report
    • Int'l Joint Research
  • [Presentation] Automatic kernel weighting for multikernel adaptive filtering: multiscale aspects2019

    • Author(s)
      Kwangjin Jeong and Masahiro Yukawa
    • Organizer
      IEEE International Conference on Acoustic, Speech, and Signal Processing
    • Related Report
      2019 Annual Research Report
    • Int'l Joint Research
  • [Presentation] Beamformer design under time-correlated interference and online implementation: brain-activity reconstruction from EEG2019

    • Author(s)
      Takehiro Kono, Masahiro Yukawa, and Tomasz Piotrowski
    • Organizer
      IEEE International Conference on Acoustic, Speech, and Signal Processing
    • Related Report
      2019 Annual Research Report
    • Int'l Joint Research
  • [Presentation] Auto-antonymの多カーネルオンライン意味変化分析2019

    • Author(s)
      岩本蘭、湯川正裕
    • Organizer
      言語処理学会第25回年次大会
    • Related Report
      2018 Annual Research Report
  • [Presentation] An Efficient Online Learning Method Based on Self-tuned Gaussian Kernels2019

    • Author(s)
      Masa-aki Takizawa and Masahiro Yukawa
    • Organizer
      Technical Report of IEICE
    • Related Report
      2018 Annual Research Report
  • [Presentation] Beamforming for Brain-Activity Reconstruction under Time-Correlated Interference2019

    • Author(s)
      Takehiro Kono, Masahiro Yukawa, Tomasz Piotrowski
    • Organizer
      Technical Report of IEICE
    • Related Report
      2018 Annual Research Report
  • [Presentation] Continuous-time Value Function Approximation in Reproducing Kernel Hilbert Spaces2018

    • Author(s)
      Motoya Ohnishi, Masahiro Yukawa, Mikael Johansson, Masashi Sugiyama
    • Organizer
      Advances in Neural Information Processing Systems
    • Related Report
      2018 Annual Research Report
    • Int'l Joint Research
  • [Presentation] A Fixed-Point Analysis of Regularized Dual Averaging Under Static Scenarios2018

    • Author(s)
      Masahiro Yukawa and Isao Yamada
    • Organizer
      APSIPA Annual Summit and Conference
    • Related Report
      2018 Annual Research Report
    • Int'l Joint Research
  • [Presentation] Sentiment Analysis in Twitter Based on Multikernel Adaptive Filtering2018

    • Author(s)
      Ran Iwamoto and Masahiro Yukawa
    • Organizer
      IEICE Signal Processing Symposium
    • Related Report
      2018 Annual Research Report
  • [Presentation] Clustering without Pre-specifying Cluster-Number Based on Sparse Eigenproblem of Graph Laplacian2018

    • Author(s)
      Yuto Ogino and Masahiro Yukawa
    • Organizer
      IEICE Signal Processing Symposium
    • Related Report
      2018 Annual Research Report
  • [Book] Machine Learning for Future Wireless Communications (Chapter 11: Adaptive Learning for Symbol Detection: A Reproducing Kernel Hilbert Space Approach)2020

    • Author(s)
      Daniyal Amir Awan, Renato Luis Garrido Cavalcante, Masahiro Yukawa, and Slawomir Stanczak
    • Publisher
      Wiley
    • ISBN
      9781119562252
    • Related Report
      2019 Annual Research Report
  • [Remarks] Masahiro Yukawa - Publications

    • URL

      http://www.ykw.elec.keio.ac.jp/yukawa/pub.html

    • Related Report
      2021 Annual Research Report
  • [Remarks] Masahiro Yukawa's Page

    • URL

      http://www.ykw.elec.keio.ac.jp/yukawa/

    • Related Report
      2020 Annual Research Report
  • [Remarks] Masahiro Yukawa (Ph.D.)

    • URL

      http://www.ykw.elec.keio.ac.jp/yukawa/

    • Related Report
      2019 Annual Research Report
  • [Remarks] Masahiro Yukawa

    • URL

      http://www.ykw.elec.keio.ac.jp/yukawa/index.html

    • Related Report
      2018 Annual Research Report

URL: 

Published: 2018-04-23   Modified: 2024-01-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi