In vivo dynamic sensing by near infrared mechanoluminescence probe.
Project/Area Number |
18H01453
|
Research Category |
Grant-in-Aid for Scientific Research (B)
|
Allocation Type | Single-year Grants |
Section | 一般 |
Review Section |
Basic Section 21030:Measurement engineering-related
|
Research Institution | Saga University |
Principal Investigator |
Ueno Naohiro 佐賀大学, 理工学部, 教授 (50356557)
|
Co-Investigator(Kenkyū-buntansha) |
徐 超男 国立研究開発法人産業技術総合研究所, エレクトロニクス・製造領域, 総括研究主幹 (70235810)
|
Project Period (FY) |
2018-04-01 – 2021-03-31
|
Project Status |
Completed (Fiscal Year 2020)
|
Budget Amount *help |
¥18,070,000 (Direct Cost: ¥13,900,000、Indirect Cost: ¥4,170,000)
Fiscal Year 2020: ¥2,080,000 (Direct Cost: ¥1,600,000、Indirect Cost: ¥480,000)
Fiscal Year 2019: ¥2,080,000 (Direct Cost: ¥1,600,000、Indirect Cost: ¥480,000)
Fiscal Year 2018: ¥13,910,000 (Direct Cost: ¥10,700,000、Indirect Cost: ¥3,210,000)
|
Keywords | 応力発光体 / 近赤外 / 応力分布 / 主成分分析 / 近赤外光 / 表面修飾 / 軌道平滑化 / 耐水性付与 / 応力発光 / 生体の力学情報 / インプラント / メカノルミネッセンス / 耐水性 |
Outline of Final Research Achievements |
Near-infrared mechanoluminescent materials that emit near-infrared rays (800-1400 nm) with high biotransparency have been applied to biosensing. At first, we focused on the correlation between the mechanoluminescent intensity and the time. A new principal component analysis method that uses both time information and pixel value were developed. Even with high noise levels in the imaging device, the mechanoluminescent components were successfully separated when the mechanoluminescent intensity increased or decreased monotonically over time. In addition, we have developed a new multi-piezo material Sr3Sn2O7: Nd3+, which has an A21am crystal structure. We have succeeded in achieving 10 times higher mechanoluminescent intensity, repeated luminescence, and water resistance than those of conventional materials.
|
Academic Significance and Societal Importance of the Research Achievements |
新たな近赤外応力発光体Sr3Sn2O7:Nd3+は、従来の応力発光体と比較して広帯域の励起波長を示しており、生体に限らず様々な構造物の応力センシングを、マルチバンドで実現する可能性を示している。その応力発光メカニズムをヒントに、さらに新たな応力発光体の可能性も見えている。また、劣悪なノイズレベルから応力発光成分を抽出する手法は、これまで応力発光強度が十分に得られなかった環境での応力センシングを可能にし、応力発光体による応力センシングの適用現場を大きく広げるものとなる。また、この手法を多元的なセンシングデータの解析手法と定義しなおせば、他のセンシング情報解析への応用を期待できる。
|
Report
(4 results)
Research Products
(13 results)