• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Interpretability of Machine Learning-Assisted Control Methods through Stochastic Controllability Analysis

Research Project

Project/Area Number 18H01461
Research Category

Grant-in-Aid for Scientific Research (B)

Allocation TypeSingle-year Grants
Section一般
Review Section Basic Section 21040:Control and system engineering-related
Research InstitutionKyoto University

Principal Investigator

Kashima Kenji  京都大学, 情報学研究科, 准教授 (60401551)

Co-Investigator(Kenkyū-buntansha) 辻野 博文  大阪大学, 薬学研究科, 助教 (10707144)
山下 沢  武庫川女子大学, 薬学部, 准教授 (70398246)
Project Period (FY) 2018-04-01 – 2022-03-31
Project Status Completed (Fiscal Year 2021)
Budget Amount *help
¥15,470,000 (Direct Cost: ¥11,900,000、Indirect Cost: ¥3,570,000)
Fiscal Year 2021: ¥3,770,000 (Direct Cost: ¥2,900,000、Indirect Cost: ¥870,000)
Fiscal Year 2020: ¥3,640,000 (Direct Cost: ¥2,800,000、Indirect Cost: ¥840,000)
Fiscal Year 2019: ¥3,380,000 (Direct Cost: ¥2,600,000、Indirect Cost: ¥780,000)
Fiscal Year 2018: ¥4,680,000 (Direct Cost: ¥3,600,000、Indirect Cost: ¥1,080,000)
Keywords制御工学 / 機械学習 / 情報通信工学 / 薬学 / 確率統計 / 確率
Outline of Final Research Achievements

While control systems that utilize large amounts of data and machine learning methods are expected to have nonlinearity and the ability to flexibly respond to changes in the environment, the lack of theoretical performance guarantees that have been ensured using mathematical models so far makes it difficult to dispel vague concerns when it comes to industrial applications. In this study, we developed the data-driven model reduction theory proposed by the principal investigator and derived theoretical results for de-black-boxing machine learning-assisted methods by giving them a stochastic control theoretical interpretation.

Academic Significance and Societal Importance of the Research Achievements

学術的には、機械学習的手法により抽出した特徴量を状態変数とする低次元モデル構築や、差分プライバシー解析、深層強化学習にもとづく自己駆動型制御システム設計、軌道の位相的性質を活用する動的システム学習とモデル予測制御への応用など、統計的学習理論とシステム制御理論の融合を推進した。社会的には、工学応用期に移行しつつある機械学習技術の信頼性向上及び実応用検証による有効性の確認をおこなった。

Report

(4 results)
  • 2021 Final Research Report ( PDF )
  • 2020 Annual Research Report
  • 2019 Annual Research Report
  • 2018 Annual Research Report
  • Research Products

    (25 results)

All 2021 2020 2019 2018 Other

All Int'l Joint Research (4 results) Journal Article (4 results) (of which Int'l Joint Research: 1 results,  Peer Reviewed: 4 results,  Open Access: 1 results) Presentation (17 results) (of which Int'l Joint Research: 4 results,  Invited: 2 results)

  • [Int'l Joint Research] Technion, Israel Institute of Technology(イスラエル)

    • Related Report
      2020 Annual Research Report
  • [Int'l Joint Research] University of Groningen(オランダ)

    • Related Report
      2020 Annual Research Report
  • [Int'l Joint Research] Technion, Israel Institute of Technology(イスラエル)

    • Related Report
      2019 Annual Research Report
  • [Int'l Joint Research] Technion, Israel Institute of Technology(イスラエル)

    • Related Report
      2018 Annual Research Report
  • [Journal Article] Sparse Optimal Stochastic Control2021

    • Author(s)
      Kaito Ito, Takuya Ikeda, Kenji Kashima
    • Journal Title

      Automatica

      Volume: 125 Pages: 109438-109438

    • DOI

      10.1016/j.automatica.2020.109438

    • Related Report
      2020 Annual Research Report
    • Peer Reviewed
  • [Journal Article] Modular control under privacy protection: Fundamental trade-offs2021

    • Author(s)
      Yu Kawano, Kenji Kashima, Ming Cao,
    • Journal Title

      Automatica

      Volume: 127 Pages: 109518-109518

    • DOI

      10.1016/j.automatica.2021.109518

    • Related Report
      2020 Annual Research Report
    • Peer Reviewed / Int'l Joint Research
  • [Journal Article] On Sparse Optimal Control for General Linear Systems2019

    • Author(s)
      Ikeda Takuya、Kashima Kenji
    • Journal Title

      IEEE Transactions on Automatic Control

      Volume: 64 Issue: 5 Pages: 2077-2083

    • DOI

      10.1109/tac.2018.2863220

    • Related Report
      2018 Annual Research Report
    • Peer Reviewed / Open Access
  • [Journal Article] Verification and Stochastic System Analysis of Power-law Fluctuation Induced by Wind Power Interconnection2018

    • Author(s)
      ITO Kaito、HAYASHI Hikaru、KASHIMA Kenji、KATO Masakazu
    • Journal Title

      Transactions of the Society of Instrument and Control Engineers

      Volume: 54 Issue: 12 Pages: 878-885

    • DOI

      10.9746/sicetr.54.878

    • NAID

      130007525210

    • ISSN
      0453-4654, 1883-8189
    • Related Report
      2018 Annual Research Report
    • Peer Reviewed
  • [Presentation] Controllability Gramian of nonlinear Gaussian process state space models with application to model sparsification2020

    • Author(s)
      Kenji Kashima, Misaki Imai
    • Organizer
      21th IFAC World Congress
    • Related Report
      2020 Annual Research Report
    • Int'l Joint Research
  • [Presentation] A fundamental performance limit of cloud-based control in terms of differential privacy level2020

    • Author(s)
      Yu Kawano, Kenji Kashima, Ming Cao
    • Organizer
      21th IFAC World Congress
    • Related Report
      2020 Annual Research Report
    • Int'l Joint Research
  • [Presentation] Continuity of the value function for stochastic sparse optimal control2020

    • Author(s)
      Kaito Ito, Takuya Ikeda, Kenji Kashima
    • Organizer
      21th IFAC World Congress
    • Related Report
      2020 Annual Research Report
  • [Presentation] 裾の重い雑音を利用した線形システムの差分プライバシー保証メカニズム2020

    • Author(s)
      伊藤海斗,河野佑,加嶋健司
    • Organizer
      第64回システム制御情報学会研究発表講演会
    • Related Report
      2020 Annual Research Report
  • [Presentation] 線形システムに対する裾の重い雑音を用いたプライバシー保護2020

    • Author(s)
      伊藤海斗,河野佑,加嶋健司
    • Organizer
      第63回自動制御連合講演会
    • Related Report
      2020 Annual Research Report
  • [Presentation] システム制御理論と機械学習2020

    • Author(s)
      加嶋健司
    • Organizer
      情報論的学習理論と機械学習研究会(IBISML)第41回研究会
    • Related Report
      2020 Annual Research Report
    • Invited
  • [Presentation] 機械学習と調和する制御理論2020

    • Author(s)
      加嶋健司
    • Organizer
      第4回SICEポストコロナ未来社会ワークショップ 人間行動と社会のモデリング
    • Related Report
      2020 Annual Research Report
    • Invited
  • [Presentation] ガウス過程状態空間モデルの可制御性グラミアンにもとづくスパース化2020

    • Author(s)
      今井、加嶋
    • Organizer
      第7回 計測自動制御学会制御部門マルチシンポジウム
    • Related Report
      2019 Annual Research Report
  • [Presentation] 勾配法にもとづくシステム同定の実装と動向2020

    • Author(s)
      丸田、渡部、加嶋
    • Organizer
      第7回 計測自動制御学会制御部門マルチシンポジウム
    • Related Report
      2019 Annual Research Report
  • [Presentation] 分散線形レギュレータの分散設計に対する強化学習アプローチ2019

    • Author(s)
      竹内、加嶋
    • Organizer
      第63回システム制御情報学会研究発表講演会
    • Related Report
      2019 Annual Research Report
  • [Presentation] ガウス過程状態空間システムの可制御性グラミアン2019

    • Author(s)
      今井、加嶋
    • Organizer
      第62回自動制御連合講演会
    • Related Report
      2019 Annual Research Report
  • [Presentation] Sparse optimal feedback control for continuous-time systems2019

    • Author(s)
      Ikeda Takuya、Kashima Kenji
    • Organizer
      18th European Control Conference
    • Related Report
      2019 Annual Research Report
    • Int'l Joint Research
  • [Presentation] Maximum Hands-Off Distributed Bearing-Based Formation Control2019

    • Author(s)
      Ikeda Takuya、Zelazo Daniel、Kashima Kenji
    • Organizer
      IEEE 58th Conference on Decision and Control
    • Related Report
      2019 Annual Research Report
    • Int'l Joint Research
  • [Presentation] データ駆動アプローチにより設計された制御器の データによる品質検証について2019

    • Author(s)
      和田、加嶋
    • Organizer
      第62回自動制御連合講演会
    • Related Report
      2019 Annual Research Report
  • [Presentation] ネットワーク上の時空間的に滑らかなプロファイルに対する最適観測点選択2019

    • Author(s)
      山本一樹,加嶋健司
    • Organizer
      第6回 計測自動制御学会制御部門マルチシンポジウム
    • Related Report
      2018 Annual Research Report
  • [Presentation] 機械学習と調和する制御理論の期待と現状2019

    • Author(s)
      加嶋健司
    • Organizer
      第6回 計測自動制御学会制御部門マルチシンポジウム
    • Related Report
      2018 Annual Research Report
  • [Presentation] エンジン吸排気系の同定における物理的知見の活用に関する一考察2018

    • Author(s)
      清水一浩,加嶋健司
    • Organizer
      第61回自動制御連合講演会
    • Related Report
      2018 Annual Research Report

URL: 

Published: 2018-04-23   Modified: 2023-01-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi