Breaking the performance limit of spin transistors by using quantum transport
Project/Area Number |
18H01492
|
Research Category |
Grant-in-Aid for Scientific Research (B)
|
Allocation Type | Single-year Grants |
Section | 一般 |
Review Section |
Basic Section 21060:Electron device and electronic equipment-related
|
Research Institution | Tokyo Institute of Technology |
Principal Investigator |
Pham Nam Hai 東京工業大学, 工学院, 准教授 (50571717)
|
Project Period (FY) |
2018-04-01 – 2021-03-31
|
Project Status |
Completed (Fiscal Year 2020)
|
Budget Amount *help |
¥17,420,000 (Direct Cost: ¥13,400,000、Indirect Cost: ¥4,020,000)
Fiscal Year 2020: ¥4,420,000 (Direct Cost: ¥3,400,000、Indirect Cost: ¥1,020,000)
Fiscal Year 2019: ¥4,420,000 (Direct Cost: ¥3,400,000、Indirect Cost: ¥1,020,000)
Fiscal Year 2018: ¥8,580,000 (Direct Cost: ¥6,600,000、Indirect Cost: ¥1,980,000)
|
Keywords | スピントランジスタ / スピンバルブ / 量子伝導 / スピン / 量子電導 |
Outline of Final Research Achievements |
In this work, we aimed to solve the conductivity mismatch problem at the interface of ferromagnetic metal / semiconductor by utilizing ballistic transport in nanoscale semiconductor channel. We fabricated nanoscale Si-based spin valve devices with Fe/(Mg)/MgO/Ge spin injector/detector and 20 nm-long Si channel, and achieved a large spin-valve ratio of -3.6% and large spin-dependent output voltage of 25 mV. We then fabricated fully epitaxial MnGa/GaAs/MnGa III-V semiconductor-based nanoscale spin valve devices, and achieved a world-record spin valve ratio of 12% and spin-dependent output voltage of 33 mV. Our results demonstrate that ballistic transport in nanoscale semiconductor is very promising for realization of high performance spin transistors.
|
Academic Significance and Societal Importance of the Research Achievements |
従来のスピントランジスタの研究では、半導体のチャネル長がマイクロメートル台と長いため、拡散伝導によるスピン輸送が行われた。そのため、磁性電極と半導体チャネルとの界面に伝導率不整合が発生し、スピン変換電圧がマイクロボルト台しか観測できず、デバイス応用に必要な電圧変化および磁気抵抗比が得られていない。本研究では、ナノスケール半導体チャネルにおける量子伝導によるスピン輸送を用いることにより、強磁性金属/半導体界面における伝導率不整合の問題を根本的に解決できることを実証し、高性能なスピントランジスタを実現できることを示し、超低消費電力コンピューティングの基盤技術を提供する。
|
Report
(4 results)
Research Products
(11 results)