• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Development of Algorithm for Ship Handling Decision using Deep Reinforcement Learning

Research Project

Project/Area Number 18H01642
Research Category

Grant-in-Aid for Scientific Research (B)

Allocation TypeSingle-year Grants
Section一般
Review Section Basic Section 24020:Marine engineering-related
Research InstitutionKyushu University

Principal Investigator

Furukawa Yoshitaka  九州大学, 工学研究院, 教授 (90253492)

Co-Investigator(Kenkyū-buntansha) 石橋 篤  東京海洋大学, 学術研究院, 講師 (00242321)
茨木 洋  九州大学, 工学研究院, 助教 (20274508)
木村 元  九州大学, 工学研究院, 教授 (40302963)
Project Period (FY) 2018-04-01 – 2021-03-31
Project Status Completed (Fiscal Year 2020)
Budget Amount *help
¥17,550,000 (Direct Cost: ¥13,500,000、Indirect Cost: ¥4,050,000)
Fiscal Year 2020: ¥2,730,000 (Direct Cost: ¥2,100,000、Indirect Cost: ¥630,000)
Fiscal Year 2019: ¥6,370,000 (Direct Cost: ¥4,900,000、Indirect Cost: ¥1,470,000)
Fiscal Year 2018: ¥8,450,000 (Direct Cost: ¥6,500,000、Indirect Cost: ¥1,950,000)
Keywords自律運航船舶 / 海上安全 / 深層強化学習 / 操船判断 / 衝突回避 / 自動運航船
Outline of Final Research Achievements

In order to realize autonomous ships, it is necessary to develop an algorithm to properly evaluate circumstance around an own ship such as weather conditions, states of relative ships and so on and to make a decision to navigate the own ship safely changing her course and speed. In this research, an algorithm which can make a ship possible to navigate autonomously considering various complicated conditions around a ship by introducing deep reinforcement learning were developed. Furthermore, a model ship control system which can be used to evaluate the performance of the developed navigation algorithm was also developed. The manoeuvring motion of a model ship can be controlled based on information such as model ship’s position, heading angle, speed, yaw rate and so on.

Academic Significance and Societal Importance of the Research Achievements

本研究で開発した操船判断アルゴリズムの研究をさらに進めて自律航行船舶を実現することができれば,海難事故の発生原因のかなりの割合を占めている操船者の誤判断や不適切な操船等の人的要因による海難事故の防止に寄与することが期待される。また,自船の周囲の複雑な環境条件を適切に評価して航路を設定し,さらに自船の周囲を航行する複数の船舶と協調して航行することが可能となれば,安全かつ効率的な海上貨物輸送システムの構築に繋がる。

Report

(4 results)
  • 2020 Annual Research Report   Final Research Report ( PDF )
  • 2019 Annual Research Report
  • 2018 Annual Research Report
  • Research Products

    (5 results)

All 2020 2019 2018

All Journal Article (2 results) (of which Int'l Joint Research: 1 results,  Peer Reviewed: 1 results,  Open Access: 1 results) Presentation (3 results) (of which Int'l Joint Research: 2 results)

  • [Journal Article] 再帰型ニューラルネットワークを用いた操縦運動推定モデル構築に関する研究2020

    • Author(s)
      江田篤史,古舘赳人,古川芳孝,茨木 洋
    • Journal Title

      日本船舶海洋工学会講演会論文集

      Volume: 30 Pages: 609-612

    • NAID

      40022395894

    • Related Report
      2020 Annual Research Report
  • [Journal Article] Automatic Track Keeping to Realize the Realistic Operation of a Ship2019

    • Author(s)
      Bora Choe, Yoshitaka Furukawa
    • Journal Title

      International Journal of Fuzzy Logic and Intelligent Systems

      Volume: 10 Issue: 3 Pages: 172-182

    • DOI

      10.5391/ijfis.2019.19.3.172

    • Related Report
      2019 Annual Research Report
    • Peer Reviewed / Open Access / Int'l Joint Research
  • [Presentation] 再帰型ニューラルネットワークを用いた操縦運動推定モデル構築に関する研究2020

    • Author(s)
      江田篤史
    • Organizer
      日本船舶海洋工学会
    • Related Report
      2020 Annual Research Report
  • [Presentation] Development of Track Keeping Algorithm using Fuzzy Inference2018

    • Author(s)
      Bora Choe, Yoshitaka Furukawa
    • Organizer
      The Twenty-eigth (2018) International Ocean and Polar Engineering Conference
    • Related Report
      2018 Annual Research Report
    • Int'l Joint Research
  • [Presentation] Development Fuzzy Inference Track Keeping Algorithm using Realistic Operational Scenarios2018

    • Author(s)
      Bora Choe, Yoshitaka Furukawa
    • Organizer
      World Maritime Technology Conference
    • Related Report
      2018 Annual Research Report
    • Int'l Joint Research

URL: 

Published: 2018-04-23   Modified: 2022-01-27  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi