Project/Area Number |
18H01693
|
Research Category |
Grant-in-Aid for Scientific Research (B)
|
Allocation Type | Single-year Grants |
Section | 一般 |
Review Section |
Basic Section 26010:Metallic material properties-related
|
Research Institution | Nagoya University (2020) Osaka University (2018-2019) |
Principal Investigator |
|
Co-Investigator(Kenkyū-buntansha) |
志賀 基之 国立研究開発法人日本原子力研究開発機構, システム計算科学センター, 研究主幹 (40370407)
|
Project Period (FY) |
2018-04-01 – 2021-03-31
|
Project Status |
Completed (Fiscal Year 2020)
|
Budget Amount *help |
¥17,550,000 (Direct Cost: ¥13,500,000、Indirect Cost: ¥4,050,000)
Fiscal Year 2020: ¥3,120,000 (Direct Cost: ¥2,400,000、Indirect Cost: ¥720,000)
Fiscal Year 2019: ¥6,630,000 (Direct Cost: ¥5,100,000、Indirect Cost: ¥1,530,000)
Fiscal Year 2018: ¥7,800,000 (Direct Cost: ¥6,000,000、Indirect Cost: ¥1,800,000)
|
Keywords | 水素透過・吸蔵 / 量子効果 / 自由エネルギー地形 / 第一原理経路積分解析 / レアイベント解析 / 水素吸蔵・透過 |
Outline of Final Research Achievements |
To establish a materials technology for using hydrogen as an energy medium, it is important to understand the behavior of hydrogen atoms in materials and reflect it into the materials design. In this study, we developed a numerical framework for predicting the characteristic behaviors of hydrogen atoms due to the nuclear quantum effects based on the quantum mechanical natures of both electrons and nuclei, namely, the ab initio approach combining path-integral molecular dynamics simulations with rare events analysis. Using this method, we successfully evaluated the free-energy profiles for the diffusion and reaction processes of hydrogen in solids. Consequently, we elucidated the kinetic and thermodynamic properties of hydrogen and its isotopes in the typical models of hydrogen-permeation/barrier materials.
|
Academic Significance and Societal Importance of the Research Achievements |
水素を次世代のエネルギー移送・発生の媒体として利用するための取組みが注目されているなか,直接的に検出・測定することが容易ではない材料中の水素の挙動を,理論的に予測・理解するためのアプローチを確立することが重要である.本研究により構築した手法は材料中の水素特性に対して高い予測能力を持ち,水素利用技術の高度化のための材料研究の促進に資するものである.また,本研究による成果は,既存の水素エネルギー材料の性能向上のみならず,新しい候補探索に対して有用な指針を与える.
|