Integration of visualization technology of quantum vortex dynamics and nanostructure control technology
Project/Area Number |
18H01712
|
Research Category |
Grant-in-Aid for Scientific Research (B)
|
Allocation Type | Single-year Grants |
Section | 一般 |
Review Section |
Basic Section 26020:Inorganic materials and properties-related
|
Research Institution | Kyushu Institute of Technology |
Principal Investigator |
|
Co-Investigator(Kenkyū-buntansha) |
堀出 朋哉 九州工業大学, 大学院工学研究院, 准教授 (70638858)
|
Project Period (FY) |
2018-04-01 – 2022-03-31
|
Project Status |
Completed (Fiscal Year 2021)
|
Budget Amount *help |
¥17,160,000 (Direct Cost: ¥13,200,000、Indirect Cost: ¥3,960,000)
Fiscal Year 2021: ¥2,470,000 (Direct Cost: ¥1,900,000、Indirect Cost: ¥570,000)
Fiscal Year 2020: ¥2,860,000 (Direct Cost: ¥2,200,000、Indirect Cost: ¥660,000)
Fiscal Year 2019: ¥2,860,000 (Direct Cost: ¥2,200,000、Indirect Cost: ¥660,000)
Fiscal Year 2018: ¥8,970,000 (Direct Cost: ¥6,900,000、Indirect Cost: ¥2,070,000)
|
Keywords | 超伝導 / 臨界電流 / 磁束ピンニング / 薄膜 / シミュレーション / TDGL / ナノ組織制御 / 時間依存GL方程式 / 大規模シミュレーション |
Outline of Final Research Achievements |
In order to increase the zero-resistance superconducting current, it is necessary to introduce the optimum nanostructure for pinning the quantum vortex thread into the material. In this study, nanostructure data in superconducting materials were collected by microstructure observation and incorporated into a computer, and a pinning numerical simulation based on the time-dependent Ginzburg-Landau (TDGL) equation was executed to predict the superconducting critical current density. As a result of investigating the correspondence with the measured values in detail, it became clear for the first time that the experimental results of Jc of the high-temperature superconducting thin film can be simulated almost accurately. In this way, we succeeded in creating a new method for accelerating the development of superconducting materials by nanostructure design, going beyond the conventional trial and error experimental approach.
|
Academic Significance and Societal Importance of the Research Achievements |
計算材料科学の進展と,材料の微細構造解析における3Dデータ取得技術の発展は材料開発において新たな地平を開きつつある。超伝導材料分野では,超伝導の動的現象を記述するために見いだされたTDGL方程式の材料開発への応用が期待できる。TDGL方程式に含まれるパラメータは微視的理論と直接つながっており,現実のナノ組織に対してTDGLシミュレーションを実行することで多体問題をまるごと数値的に解いて現実に近いJcの予測ができる。新たな材料開発を加速する手法を生み出すことは,超伝導分野の理論や応用を刺激すると共に,他の構造材料・機能性材料への展開にも有効であると考えている。
|
Report
(5 results)
Research Products
(21 results)
-
-
-
-
-
-
-
-
-
-
-
[Journal Article] Improved Flux Pinning for High-Field Applications in BaHfO3-Doped SmBa2Cu3 Oy-Coated Conductors With High Density of Random Pinning Centers Induced by BaHfO 3 Nanorods2018
Author(s)
S. Miura, Y. Tsuchiya, Y. Yoshida, Y. Ichino, S. Awaji, A. Ichinose, K. Matsumoto, A. Ibi, T. Izumi, M. Iwakuma
-
Journal Title
Vol. 28, No. 4, Article No. 8000606
Volume: Vol. 28, No. 4
Issue: 4
Pages: 8000606-8000606
DOI
Related Report
Peer Reviewed
-
-
-
-
-
-
-
-
-
-