Novel development of the highly-functional super lightweight bcc-structured Mg-Li alloy via crystallographic orientation control
Project/Area Number |
18H01736
|
Research Category |
Grant-in-Aid for Scientific Research (B)
|
Allocation Type | Single-year Grants |
Section | 一般 |
Review Section |
Basic Section 26040:Structural materials and functional materials-related
|
Research Institution | Osaka University |
Principal Investigator |
Hagihara Koji 大阪大学, 工学研究科, 准教授 (10346182)
|
Project Period (FY) |
2018-04-01 – 2021-03-31
|
Project Status |
Completed (Fiscal Year 2020)
|
Budget Amount *help |
¥17,290,000 (Direct Cost: ¥13,300,000、Indirect Cost: ¥3,990,000)
Fiscal Year 2020: ¥4,680,000 (Direct Cost: ¥3,600,000、Indirect Cost: ¥1,080,000)
Fiscal Year 2019: ¥5,850,000 (Direct Cost: ¥4,500,000、Indirect Cost: ¥1,350,000)
Fiscal Year 2018: ¥6,760,000 (Direct Cost: ¥5,200,000、Indirect Cost: ¥1,560,000)
|
Keywords | Mg合金 / 強度 / 組織制御 / 結晶方位依存性 / 社会基盤構造材料 / 生体材料 / 単結晶 / 弾性率 / 方位依存性 / 耐食性 |
Outline of Final Research Achievements |
In this study, "crystal orientation dependence" of various physical properties such as plastic deformation behavior, elastic modulus, and degradable behavior in bcc-structured Mg-Li alloys were quantitatively determined by using the single crystals. It was clarified that each characteristic shows orientation dependence despite having a highly symmetric bcc structure. In addition, it was first clarified that the addition of 5 at.% of Al in the Mg-Li single crystal combined with rapid quenching caused an extreme increase in yield stress up to about 470 MPa; this compares to about 50 MPa in a Mg-Li binary crystal. Furthermore, it was found that by preparing an α/β two-phase alloy, it is possible to increase the strength while ensuring a certain degree of ductility.
|
Academic Significance and Societal Importance of the Research Achievements |
超軽量構造材料,さらにはステント等の生体内溶解性デバイス材料といった新材料として期待されるMg-Li合金において,その利用普及に向けた問題点である,強度不足,生体内での高溶解速度といった特性の改善について,本研究により結晶方位制御の観点からの改善可能性が初めて示された.また強度と延性のバランスをとった二相合金についても,今後結晶粒微細化といった更なる組織制御により,力学特性をより最適化,向上させた合金開発が期待できることが示された.これら成果を基に,上述のような新材料開発が今後促進されるものと強く期待できる.
|
Report
(4 results)
Research Products
(22 results)