Design of silica-based molecular sieving membranes with controlled sub-nano structure by anion doping
Project/Area Number |
18H01768
|
Research Category |
Grant-in-Aid for Scientific Research (B)
|
Allocation Type | Single-year Grants |
Section | 一般 |
Review Section |
Basic Section 27010:Transport phenomena and unit operations-related
|
Research Institution | Hiroshima University |
Principal Investigator |
|
Project Period (FY) |
2018-04-01 – 2021-03-31
|
Project Status |
Completed (Fiscal Year 2020)
|
Budget Amount *help |
¥14,300,000 (Direct Cost: ¥11,000,000、Indirect Cost: ¥3,300,000)
Fiscal Year 2020: ¥2,210,000 (Direct Cost: ¥1,700,000、Indirect Cost: ¥510,000)
Fiscal Year 2019: ¥2,210,000 (Direct Cost: ¥1,700,000、Indirect Cost: ¥510,000)
Fiscal Year 2018: ¥9,880,000 (Direct Cost: ¥7,600,000、Indirect Cost: ¥2,280,000)
|
Keywords | アモルファスシリカ / 分離膜 / 細孔径制御 / 分子ふるい / 透過特性 / 構造安定化 / 気体透過特性 / サブナノ空間 |
Outline of Final Research Achievements |
In the present study, microporous silica structure was controlled by anion doping for molecular sieving membranes. It was found that fluorine doping was drastically increased the reaction rate of silica sol. Sol size at nano-level required for preparing molecular sieve membranes was successfully controlled by the Si concentration. XPS results indicate that doped fluoride ion present as Si-F when it was doped with silica, and as a Si-F and a CF bonds when it was doped with organosilica. A separation membrane was successfully fabricated on porous support. A crack-free thin layer formation was possible, regardless of the Si source. In addition, since the Si-OH group density in the network structure of the fluorine-based silica membrane was apparently smaller than that of the conventional silica, it was found that there was no change in network pore size even calcined at 750 oC. Pore size tended to increase as the doped F concentration increased, irrespective Si precursor.
|
Academic Significance and Societal Importance of the Research Achievements |
地球レベルでの環境負荷が問題となる現在では,持続可能な社会を構築するために新規機能性材料や効率の良い生産方式の開発が極めて重要になる。膜分離工学は,国連が定めた,Sustainable Development Goals(SDGs,持続可能な開発目標)への貢献が大きい学問である。本研究では,省エネ社会を実現するために目的分離対象に応じて,サブナノレベルでの分離膜の細孔径制御の可能性について検討を行なった。アニオンであるフッ化物イオンをアモルファスシリカにドープすることで,細孔径の制御が可能であった。また,構造安定性に寄与するSi-OH基の制御により,アモルファス構造の安定化が可能であった。
|
Report
(4 results)
Research Products
(27 results)