Creation of highly active electrode reaction field by composite and higher-order structuring of different-dimensional catalysts
Project/Area Number |
18H01772
|
Research Category |
Grant-in-Aid for Scientific Research (B)
|
Allocation Type | Single-year Grants |
Section | 一般 |
Review Section |
Basic Section 27020:Chemical reaction and process system engineering-related
|
Research Institution | Gunma University |
Principal Investigator |
|
Co-Investigator(Kenkyū-buntansha) |
石飛 宏和 群馬大学, 大学院理工学府, 助教 (00708406)
|
Project Period (FY) |
2018-04-01 – 2021-03-31
|
Project Status |
Completed (Fiscal Year 2021)
|
Budget Amount *help |
¥16,640,000 (Direct Cost: ¥12,800,000、Indirect Cost: ¥3,840,000)
Fiscal Year 2020: ¥2,860,000 (Direct Cost: ¥2,200,000、Indirect Cost: ¥660,000)
Fiscal Year 2019: ¥2,340,000 (Direct Cost: ¥1,800,000、Indirect Cost: ¥540,000)
Fiscal Year 2018: ¥11,440,000 (Direct Cost: ¥8,800,000、Indirect Cost: ¥2,640,000)
|
Keywords | 電極触媒 / 燃料電池 / 酸化グラフェン / 複合体構造 / ナノ材料 / メタノール燃料電池 / グラフェン |
Outline of Final Research Achievements |
With the aim of constructing a fuel electrode catalyst layer that dramatically improves the power output of a direct methanol fuel cell, we investigated the introduction of surface treatment for GO as a 2D catalyst support and the composite with nano-sized cocatalysts and spacer materials. By using RGOA, which is obtained by heat-treatment of GO aerogel at 200 degree C, as the support, we succeeded in increasing the catalytic utilization of PtRu. This is due to the decrease in oxygen functional groups on the surface of GO. Furthermore, the composite of PtRu / RGOA with Ti4O7 fine particles showed almost 100% catalyst utilization and mass activity about twice as high as PtRu/RGOA. It was demonstrated that high catalyst layer activity is realized by adjusting the mixing ratio of PtRu/RGOA and Ti4O7 fine particles.
|
Academic Significance and Societal Importance of the Research Achievements |
直接メタノール燃料電池は、液体メタノールの取扱いの容易さ、高いエネルギー密度、小型化が可能なことから次世代の高効率なコンパクト電源として期待されている。直接メタノール燃料電池の実用化には、貴金属触媒の使用量を抑えつつ、出力密度を増大するというトレードオフ問題を解決しなければならない。本研究では従来触媒利用率が低かった2D触媒の触媒利用率をほぼ100%に増大させ、燃料電池の触媒層に適した高い反応活性と層構造を有する触媒層構築する方法を明らかにした。
|
Report
(4 results)
Research Products
(13 results)