Project/Area Number |
18H01840
|
Research Category |
Grant-in-Aid for Scientific Research (B)
|
Allocation Type | Single-year Grants |
Section | 一般 |
Review Section |
Basic Section 28050:Nano/micro-systems-related
|
Research Institution | Tohoku University |
Principal Investigator |
Kosuke Ino 東北大学, 工学研究科, 准教授 (00509739)
|
Project Period (FY) |
2018-04-01 – 2021-03-31
|
Project Status |
Completed (Fiscal Year 2020)
|
Budget Amount *help |
¥17,290,000 (Direct Cost: ¥13,300,000、Indirect Cost: ¥3,990,000)
Fiscal Year 2020: ¥5,070,000 (Direct Cost: ¥3,900,000、Indirect Cost: ¥1,170,000)
Fiscal Year 2019: ¥6,630,000 (Direct Cost: ¥5,100,000、Indirect Cost: ¥1,530,000)
Fiscal Year 2018: ¥5,590,000 (Direct Cost: ¥4,300,000、Indirect Cost: ¥1,290,000)
|
Keywords | 電気化学デバイス / 電極アレイ / 細胞培養 / 細胞機能計測 / 電気化学イメージング / 電気化学 / バイオセンサ / 生体様組織構築 / マイクロ・ナノ化学 / 細胞培養プラットフォーム / 細胞チップ |
Outline of Final Research Achievements |
For drug screening and toxic testing, experimental animals are used. However, some experiments are banned for animal welfare. In addition, the results differ from those of human, which causes low accuracy of screening. To solve the problems, cultured cells are utilized. However, it is difficult to prepare in-vivo like organs using conventional 2D culture on plastic plates. In addition, it is necessary to monitor cell functions during cell culture for checking the quality of the cells. To solve the problems, in the present study, I have developed electrochemical devices and systems for fabrication and evaluation of 3D cultured cells having in-vivo like functions. For example, an electrode array device was applied for fabrication of 3D hydrogels containing cells. In addition, several analytical devices, such as electrochemiluminescence (ECL)-based devices, were developed. In the future, these devices and systems will be integrated as smart cell culture platforms.
|
Academic Significance and Societal Importance of the Research Achievements |
電気化学デバイス・システムを用いた3Dハイドロゲル作製法は、3D生体様組織構築への応用が期待できる。今回開発した手法は、従来のバイオファブリケーション手法と比べて解像度や使いやすさの面で劣っている。一方、電気化学バイオファブリケーションの研究は発展途上であり、未解明・未達成の部分が多い魅力的な研究分野である。今後の発展で従来法を凌駕できる可能性があり、それによる社会還元が期待できる。これ以外にも本研究では、電気刺激に対する細胞機能制御や新しい原理に基づく電気化学計測法を提案しており、電気化学の細胞チップへの可能性が広がった。今後さらに研究を発展させ、バイオチップ産業にも貢献したい。
|