Generation of high power out-of-phase mode exceeding self-focusing limit by newly-designed multicore fiber
Project/Area Number |
18H01896
|
Research Category |
Grant-in-Aid for Scientific Research (B)
|
Allocation Type | Single-year Grants |
Section | 一般 |
Review Section |
Basic Section 30020:Optical engineering and photon science-related
|
Research Institution | The University of Electro-Communications |
Principal Investigator |
Shirakawa Akira 電気通信大学, レーザー新世代研究センター, 教授 (00313429)
|
Co-Investigator(Kenkyū-buntansha) |
齋藤 和也 豊田工業大学, 工学部, 教授 (20278394)
|
Project Period (FY) |
2018-04-01 – 2021-03-31
|
Project Status |
Completed (Fiscal Year 2020)
|
Budget Amount *help |
¥17,030,000 (Direct Cost: ¥13,100,000、Indirect Cost: ¥3,930,000)
Fiscal Year 2020: ¥1,690,000 (Direct Cost: ¥1,300,000、Indirect Cost: ¥390,000)
Fiscal Year 2019: ¥7,800,000 (Direct Cost: ¥6,000,000、Indirect Cost: ¥1,800,000)
Fiscal Year 2018: ¥7,540,000 (Direct Cost: ¥5,800,000、Indirect Cost: ¥1,740,000)
|
Keywords | ファイバーレーザー / マルチコアファイバー / 位相同期 / ビーム結合 |
Outline of Final Research Achievements |
We studied phase-locking of multicore fiber (MCF) lasers and achieved lots of noticeable results while the proposed MCF could not be fabricated. We have succeeded in phase-locked and mode-locked MCF laser for the first time in the world by use of a 7-core Yb-doped photonic crystal fiber and a saturable absorber. It generates picosecond pulses with as high as 5.8W of average power and 137nJ of pulse energy directly from the fiber. We also proposed and demonstrated a new scheme of coherent beam combining of multiple fiber amplifiers by use of deep reinforcement learning, and showed it can be applicable to MCF amplifiers. An outlook not only for power scaling but for controlling freely the spatio-temporal properties including an out-of-phase state.
|
Academic Significance and Societal Importance of the Research Achievements |
ファイバーレーザーの高出力化・高エネルギー化は喫緊の課題である。本研究で実証したマルチコアファイバー(MCF)レーザーのout-pf-phaseモードの選択励振、位相同期とモード同期の同時実現等の成果により、パルスファイバーレーザーのエネルギースケーリングの方向性を示すことができた。また人工知能(AI)の手法を複数レーザーの位相同期に適用できると示したことも光科学における金字塔と確信する。一般に用いられている能動法と比べ、コア数の増大による系の複雑化なしにコヒーレントビーム結合が可能であり、スケーラビリティに優れる。
|
Report
(4 results)
Research Products
(49 results)