Basic study on the development of flow rate measurement system under harsh environment conditions
Project/Area Number |
18H01930
|
Research Category |
Grant-in-Aid for Scientific Research (B)
|
Allocation Type | Single-year Grants |
Section | 一般 |
Review Section |
Basic Section 31020:Earth resource engineering, Energy sciences-related
|
Research Institution | National Institute of Advanced Industrial Science and Technology |
Principal Investigator |
Wada Sanehiro 国立研究開発法人産業技術総合研究所, 計量標準総合センター, 主任研究員 (60738293)
|
Co-Investigator(Kenkyū-buntansha) |
遠山 暢之 国立研究開発法人産業技術総合研究所, 計量標準総合センター, 研究グループ長 (60344165)
|
Project Period (FY) |
2018-04-01 – 2021-03-31
|
Project Status |
Completed (Fiscal Year 2020)
|
Budget Amount *help |
¥17,810,000 (Direct Cost: ¥13,700,000、Indirect Cost: ¥4,110,000)
Fiscal Year 2020: ¥2,470,000 (Direct Cost: ¥1,900,000、Indirect Cost: ¥570,000)
Fiscal Year 2019: ¥4,810,000 (Direct Cost: ¥3,700,000、Indirect Cost: ¥1,110,000)
Fiscal Year 2018: ¥10,530,000 (Direct Cost: ¥8,100,000、Indirect Cost: ¥2,430,000)
|
Keywords | 流量計測 / 流速計測 / 超音波 / レーザ超音波 / 炭化ケイ素 / 流速分布計測 / レーザ / 流量 |
Outline of Final Research Achievements |
This report presents the development of measuring flow velocity and flow rate which is applicable to high temperature, high pressure and high corrosion conditions. The measurement system uses the pulsed ultrasound induced by the laser ultrasound and the transmitted pulse is detected by using the laser vibration meter. The flow velocity can be calculated by the delay time of the transmitted pulse. To estimate the developed measurement system, the actual scale flow measurements were conducted at the flow rate calibration facility in Japan. Additionally, a new signal processing technique for flow rate measurement using the ultrasonic velocity profile method was also developed.
|
Academic Significance and Societal Importance of the Research Achievements |
超臨界地熱発電は、古火山・古カルデラ下部に存在する可能性が高い超臨界岩体の熱エネルギーを利用するため、地熱発電容量を現在の数十倍以上にできるポテンシャルを有する。超臨界地熱発電プラントの設計・運用には地熱貯留槽における「温度・圧力・流量」のセンシング技術が不可欠だが、唯一「流量」において将来的に実用化見通し可能な基盤技術が見当たらない。これは、超遠隔(4~5km地下)かつ高温・高圧・高腐食性(~500℃、~50MPa、PH~1.5)の過酷環境下における流量計測が極めて困難なためである。従って、その流量センシング法の基盤技術を構築することは、超臨界地熱発電実現への貢献が期待できる。
|
Report
(5 results)
Research Products
(3 results)