Single-molecule analysis of plasmon-induced dissociation reactions
Project/Area Number |
18H01947
|
Research Category |
Grant-in-Aid for Scientific Research (B)
|
Allocation Type | Single-year Grants |
Section | 一般 |
Review Section |
Basic Section 32010:Fundamental physical chemistry-related
|
Research Institution | Institute of Physical and Chemical Research |
Principal Investigator |
Kazuma Emiko 国立研究開発法人理化学研究所, 開拓研究本部, 研究員 (50633864)
|
Project Period (FY) |
2018-04-01 – 2021-03-31
|
Project Status |
Completed (Fiscal Year 2020)
|
Budget Amount *help |
¥17,810,000 (Direct Cost: ¥13,700,000、Indirect Cost: ¥4,110,000)
Fiscal Year 2020: ¥3,380,000 (Direct Cost: ¥2,600,000、Indirect Cost: ¥780,000)
Fiscal Year 2019: ¥3,380,000 (Direct Cost: ¥2,600,000、Indirect Cost: ¥780,000)
Fiscal Year 2018: ¥11,050,000 (Direct Cost: ¥8,500,000、Indirect Cost: ¥2,550,000)
|
Keywords | プラズモン / 走査型トンネル顕微鏡 / 単一分子 / 化学反応 / STM |
Outline of Final Research Achievements |
In this study, the plasmon-induced dissociation of a single-molecule was investigated to reveal the reaction mechanism. The main purpose of this study is to obtain fundamental understanding of the interaction between the plasmon and the molecule by considering the electronic structure of the adsorbed molecule formed by the orbital hybridization with metal. The plasmon-induced dissociation of oxygen molecules strongly chemisorbed on Ag(110) with different orientations and electronic structures was investigated using a scanning tunneling microscope combined with light irradiation. Photochemical reactions and dissociation reactions induced by injecting tunneling electrons or holes were also investigated. A combination of quantitative analysis by the experiments and density functional theory calculations revealed that the hot carriers generated through the decay of the plasmon are transferred to the molecule strongly adsorbed on the metal surface.
|
Academic Significance and Societal Importance of the Research Achievements |
本研究は、プラズモン誘起解離反応において「金属と分子の界面における相互作用によって形成される分子の電子状態と反応素過程の関係性」についての知見を与えるものである。本研究の達成により、金属表面に強く化学吸着した分子のプラズモン誘起化学反応は、プラズモンの緩和過程で生成するホットキャリアが重要な役割を果たすことが示され、反応機構の体系化に一歩近づいた。今後、分子の電子状態と反応素過程の関係性の更なる解明によって、分子の電子状態を界面の構造制御によって積極的に制御することで、太陽光エネルギーによるグリーンプロセスが可能な全く新しい機構に基づく触媒の開拓につながると期待される。
|
Report
(4 results)
Research Products
(14 results)