Development of fine bubble-based organic synthesis: Toward establishment of green manufacturing by new technology from Japan
Project/Area Number |
18H02012
|
Research Category |
Grant-in-Aid for Scientific Research (B)
|
Allocation Type | Single-year Grants |
Section | 一般 |
Review Section |
Basic Section 34030:Green sustainable chemistry and environmental chemistry-related
|
Research Institution | Shizuoka University |
Principal Investigator |
MASE NOBUYUKI 静岡大学, グリーン科学技術研究所, 教授 (40313936)
|
Project Period (FY) |
2018-04-01 – 2021-03-31
|
Project Status |
Completed (Fiscal Year 2020)
|
Budget Amount *help |
¥17,810,000 (Direct Cost: ¥13,700,000、Indirect Cost: ¥4,110,000)
Fiscal Year 2020: ¥3,250,000 (Direct Cost: ¥2,500,000、Indirect Cost: ¥750,000)
Fiscal Year 2019: ¥3,120,000 (Direct Cost: ¥2,400,000、Indirect Cost: ¥720,000)
Fiscal Year 2018: ¥11,440,000 (Direct Cost: ¥8,800,000、Indirect Cost: ¥2,640,000)
|
Keywords | グリーンものづくり / グリーンケミストリー / ファインバブル / マイクロバブル / ウルトラファインバブル / 多相系反応 / 装置開発 / フェアリー化合物 / FB手法の集積化 |
Outline of Final Research Achievements |
The gas-liquid phase reaction is a clean and straightforward reaction for green chemistry because it can be purified by simply removing the reactive gas from the reaction mixture. However, since this reaction is efficiently carried out under high pressure using a pressure-resistant vessel, there have been issues regarding safety and cost. In this study, we have developed a method under ambient pressure using fine bubbles that can efficiently disperse and dissolve gases in the liquid phase. Compared to conventional bubbling, the fine bubble method improves the reactivity of air-oxidation, hydrogenation, and photo-induced oxidation. Furthermore, the fine bubble method can be used in sequence and integrated with other methods such as flow chemistry. Thus, the fine bubble method has the potential for a wide range of applications and is expected to contribute to synthesizing fine chemicals from the laboratory to the production level.
|
Academic Significance and Societal Importance of the Research Achievements |
一般的に基質濃度が高ければ高いほど反応速度は向上する。しかし、気体が関与する反応において、基質濃度を高めることは困難であり、大過剰の気体または高圧反応容器中で加圧して反応性を高める方式が1世紀以上取り組まれてきた。「如何にして基質となる気体の濃度を向上するか」という長年の問いかけに対し、これまで注目されてこなかった目視できないコロイド領域の気泡(ファインバブル)により解決することを、研究代表者は新たに提唱した。つまり、「無理やり溶解するのではなく、自主的に溶解させる」という発想の転換を図り、研究室から生産レベルにおけるファインケミカルズ合成へ貢献できるファインバブル手法の開発に至った。
|
Report
(4 results)
Research Products
(49 results)