Development of multifunctional polymer ionics materials and their applications to energy devices
Project/Area Number |
18H02030
|
Research Category |
Grant-in-Aid for Scientific Research (B)
|
Allocation Type | Single-year Grants |
Section | 一般 |
Review Section |
Basic Section 35020:Polymer materials-related
|
Research Institution | University of Yamanashi |
Principal Investigator |
MIYATAKE Kenji 山梨大学, 大学院総合研究部, 教授 (50277761)
|
Project Period (FY) |
2018-04-01 – 2021-03-31
|
Project Status |
Completed (Fiscal Year 2020)
|
Budget Amount *help |
¥17,290,000 (Direct Cost: ¥13,300,000、Indirect Cost: ¥3,990,000)
Fiscal Year 2020: ¥5,720,000 (Direct Cost: ¥4,400,000、Indirect Cost: ¥1,320,000)
Fiscal Year 2019: ¥5,720,000 (Direct Cost: ¥4,400,000、Indirect Cost: ¥1,320,000)
Fiscal Year 2018: ¥5,850,000 (Direct Cost: ¥4,500,000、Indirect Cost: ¥1,350,000)
|
Keywords | 高分子イオニクス / イオン伝導 / エネルギーデバイス / 機能性高分子 / イオニクス / 燃料電池 |
Outline of Final Research Achievements |
A series of quaternized copolymers (QP-QAF) composed of quinquephenylene and fluorene groups functionalized with pendant hexyltrimethylammonium groups were designed and synthesized.Precursor copolymers were successfully synthesized, which were fully quaternized to obtain the title copolymers. The resulting membranes exhibited minute phase-separated morphology based on the hydrophilic/hydrophobic differences in the components as confirmed by suggested by TEM images. High hydroxide ion conductivity up to 134 mS/cm in water at 80 degrees C was obtained with the high ion exchange capacity (2.25 meq/g) membrane. The membranes were stable in strongly alkaline conditions (4 M KOH at 80 degrees C) for as long as 1000 h without serious degradation. A hydrogen/oxygen alkaline fuel cell using the QP-QAF membrane exhibited 248 mW/cm2 of the maximum power density at 60 degrees C and 100% relative humidity.
|
Academic Significance and Societal Importance of the Research Achievements |
芳香族から成る疎水部構造とアンモニウム基などのイオン基を持つ親水部構造を組み合わせる手法で、新規なイオン導電性高分子薄膜の開発に成功した。各成分の組成や配列などを制御することにより、薄膜のモルフォロジーやイオニクス材料としての物性を向上できることを見出した。得られたアニオン導電性薄膜は水中で高い水酸化物イオン導電率を示すとともに、形状安定性、アルカリ安定性にも優れていた。このアニオン導電性薄膜を用いてアルカリ形燃料電池の発電試験に成功し、優れた発電性能を得た。次世代の燃料電池の基盤技術に貢献することが期待できる成果である。
|
Report
(4 results)
Research Products
(79 results)