Creation of functional supramolecular materials with reversible or movable supramolecules as crosslinking points
Project/Area Number |
18H02035
|
Research Category |
Grant-in-Aid for Scientific Research (B)
|
Allocation Type | Single-year Grants |
Section | 一般 |
Review Section |
Basic Section 35020:Polymer materials-related
|
Research Institution | Osaka University |
Principal Investigator |
|
Project Period (FY) |
2018-04-01 – 2021-03-31
|
Project Status |
Completed (Fiscal Year 2020)
|
Budget Amount *help |
¥17,420,000 (Direct Cost: ¥13,400,000、Indirect Cost: ¥4,020,000)
Fiscal Year 2020: ¥4,810,000 (Direct Cost: ¥3,700,000、Indirect Cost: ¥1,110,000)
Fiscal Year 2019: ¥5,850,000 (Direct Cost: ¥4,500,000、Indirect Cost: ¥1,350,000)
Fiscal Year 2018: ¥6,760,000 (Direct Cost: ¥5,200,000、Indirect Cost: ¥1,560,000)
|
Keywords | 選択的接着 / 自己修復材料 / 高靭性材料 / 刺激応答材料 / 光刺激応答性 / 化学刺激応答材料 / 可逆性架橋材料 / 可動性架橋材料 / 自己修復性 / 高靭性 / 分子接着技術 / 応力分散性 / 超分子材料 / 超分子 / 刺激応答性 / 可逆性架橋 / 可動性架橋 / ホスト-ゲスト相互作用 / アクチュエータ / 酸化還元応答性 |
Outline of Final Research Achievements |
The design of polymer materials greatly controls functions depending on the selection of the crosslinked structure. The research project focused on the reversible bond and [c2]daisy chain molecules to function as topologically-interlocked molecules. By introducing these crosslinkers, we will create a new functional polymeric materials that was not found in conventional polymer materials. The goal of the research project was to introduce reversible bonds into polymer materials and to fabricate selective adhesion between materials through molecular recognition, self-healing materials / adhesives, high toughness materials, and stimulus-responsive actuators. During the research period, we evaluated the functions of self-healing supramolecular materials and movable cross-linked materials that function in a dry state, produced photostimuli-responsive materials, and elucidated the mechanism of function.
|
Academic Significance and Societal Importance of the Research Achievements |
市場に出回っている自己修復材料は応力緩和機構であり、結合の再形成を通して修復できる材料ではない。本研究では分子認識により材料を選択的に接着できる自己修復方法を選択した。研究対象として、“線膨張に応答する自己修復性マテリアル”、“応力分散機能による高靭性と自己修復性を兼ね備えた低硬化収縮材料”、“二次電池の自己修復性負極バインダー材料”の実現を目的に研究展開した。これらの成果は、コーティング材やクッション材、自動車関連や電子電気用材料などの高機能性材料、パンクしないタイヤ、線膨張率の異なる異種材料間の自己修復性接着、フレキシブル電極材料への活用が期待され、実用化に向けた活動も始まった。
|
Report
(4 results)
Research Products
(85 results)