Enhanced molecular emission characteristics by controlling electronic structure relating to the high order singlet excited state
Project/Area Number |
18H02046
|
Research Category |
Grant-in-Aid for Scientific Research (B)
|
Allocation Type | Single-year Grants |
Section | 一般 |
Review Section |
Basic Section 35030:Organic functional materials-related
|
Research Institution | The University of Electro-Communications |
Principal Investigator |
Hirata Shuzo 電気通信大学, 大学院情報理工学研究科, 准教授 (20552227)
|
Project Period (FY) |
2018-04-01 – 2021-03-31
|
Project Status |
Completed (Fiscal Year 2020)
|
Budget Amount *help |
¥17,030,000 (Direct Cost: ¥13,100,000、Indirect Cost: ¥3,930,000)
Fiscal Year 2020: ¥2,080,000 (Direct Cost: ¥1,600,000、Indirect Cost: ¥480,000)
Fiscal Year 2019: ¥10,140,000 (Direct Cost: ¥7,800,000、Indirect Cost: ¥2,340,000)
Fiscal Year 2018: ¥4,810,000 (Direct Cost: ¥3,700,000、Indirect Cost: ¥1,110,000)
|
Keywords | 高次一重項励起状態 / 2光子吸収 / 光アップコンバージョン / 室温りん光 / 長寿命室温りん光 / 蓄光 / 三重項励起状態 / スピン軌道相互作用 / Kasha則 / 非放射遷移 / Kashaの法則 / 内部項間 / 分子軌道 / 高次励起状態 / 励起吸収 / 2段階励起 |
Outline of Final Research Achievements |
Electronic structures relating to the high order singlet excited state (Sn) have not been considered to control excitons. Here we enhance photon up-conversion characteristics via two-photon absorption and persistent room-temperature phosphorescence (RTP) characteristics by controlling the electronic structures relating to Sn. The effective separation between electronic structures relating to Sn and that relating to the lowest singlet excited state led to more fluorescence from Sn to allow enhanced photon-up conversion intensity after stepwise two-photon absorption. The enhancement of the transition dipole moment between Sn and the ground state by controlling the Sn electronic structure increases the rate constant of phosphorescence without largely increasing the rate constant of nonradiative transition from the lowest triplet excited state, resulting in a large increase of RTP yield with keeping long RTP lifetime.
|
Academic Significance and Societal Importance of the Research Achievements |
生体イメージング用の発光分子プローブでは、個々の分子が分子レベルで反応に作用する必要があるが、逐次型2光子吸収によって光アップコンバージョンを示す分子はより小型な低パワーナノ秒光源での3次元発光イメージングを可能にする技術につながる可能性がある。また高効率長寿命室温りん光分子の既存の蓄光材料、化学発光材料、放射線材料と比較して瞬間的につよい残光の輝度を出す特性は、既存の材料や技術では困難であった高解像イメージングと自家蛍光フリーを両立する非接触イメージング技術領域を開拓することにつながることが期待される。
|
Report
(4 results)
Research Products
(44 results)