• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Intensifying deep learning theory and its application to structure analysis of deep neural network

Research Project

Project/Area Number 18H03201
Research Category

Grant-in-Aid for Scientific Research (B)

Allocation TypeSingle-year Grants
Section一般
Review Section Basic Section 60010:Theory of informatics-related
Research InstitutionThe University of Tokyo

Principal Investigator

Suzuki Taiji  東京大学, 大学院情報理工学系研究科, 准教授 (60551372)

Project Period (FY) 2018-04-01 – 2022-03-31
Project Status Completed (Fiscal Year 2021)
Budget Amount *help
¥17,160,000 (Direct Cost: ¥13,200,000、Indirect Cost: ¥3,960,000)
Fiscal Year 2021: ¥4,420,000 (Direct Cost: ¥3,400,000、Indirect Cost: ¥1,020,000)
Fiscal Year 2020: ¥2,860,000 (Direct Cost: ¥2,200,000、Indirect Cost: ¥660,000)
Fiscal Year 2019: ¥4,550,000 (Direct Cost: ¥3,500,000、Indirect Cost: ¥1,050,000)
Fiscal Year 2018: ¥5,330,000 (Direct Cost: ¥4,100,000、Indirect Cost: ¥1,230,000)
Keywords深層学習 / カーネル法 / 汎化誤差解析 / ノンパラメトリック統計 / モデル圧縮 / 機械学習 / 確率的最適化 / 統計的学習理論 / 汎化誤差 / 数理統計 / 高次元統計 / 学習理論 / 構造解析 / 最適化
Outline of Final Research Achievements

Deep learning currently plays a central role in machine learning and has shown high performance in many tasks. On the other hand, theoretical understanding of its principles has not progressed. Indeed, at the beginning of this research project, it was almost a black box. In order to change this situation, we have obtained the following research results on the principles of deep learning. (1) Compression based generalization error analysis of deep learning from the kernel method perspective, (2) Proposing a new method to obtain the optimal model structure based on statistical degrees of freedom and its application to model compression, (3) Proposal of new stochastic optimization methods, and (4) Theoretical proof of the superiority of deep learning over the kernel method and other classical methods. Through these studies, we have obtained many insights into the question of why deep learning is better than other methods.

Academic Significance and Societal Importance of the Research Achievements

深層学習は機械学習の社会実装が進む中,社会的重要な技術となっている.一方でその原理が解明されずに応用だけ進むことは,制御可能性や説明可能性という観点からも望ましくない.本研究では,種々の数学的道具を用いて深層学習の原理解明に貢献し,また理論の応用として最適なモデルの探索やモデル圧縮法を提案した.研究成果により研究開始時期と比べて非常に多くの理論的知見が得られた.これは,深層学習をホワイトボックス化するという意味で社会的意義が大きい成果である,

Report

(5 results)
  • 2021 Annual Research Report   Final Research Report ( PDF )
  • 2020 Annual Research Report
  • 2019 Annual Research Report
  • 2018 Annual Research Report
  • Research Products

    (149 results)

All 2022 2021 2020 2019 2018 Other

All Int'l Joint Research (5 results) Journal Article (59 results) (of which Int'l Joint Research: 9 results,  Peer Reviewed: 49 results,  Open Access: 54 results) Presentation (82 results) (of which Int'l Joint Research: 27 results,  Invited: 42 results) Remarks (2 results) Patent(Industrial Property Rights) (1 results) (of which Overseas: 1 results)

  • [Int'l Joint Research] Vector Institute/University of Toronto(カナダ)

    • Related Report
      2021 Annual Research Report
  • [Int'l Joint Research] University of Toronto/Vector Institute(カナダ)

    • Related Report
      2019 Annual Research Report
  • [Int'l Joint Research] Tsinghua University(中国)

    • Related Report
      2019 Annual Research Report
  • [Int'l Joint Research] Stanford University(米国)

    • Related Report
      2019 Annual Research Report
  • [Int'l Joint Research] CREST/INRIA/Universite Paris-Saclay(フランス)

    • Related Report
      2019 Annual Research Report
  • [Journal Article] AutoLL: Automatic Linear Layout of Graphs based on Deep Neural Network2022

    • Author(s)
      Watanabe Chihiro、Suzuki Taiji
    • Journal Title

      IEEE Symposium Series on Computational Intelligence (SSCI 2021)

      Volume: - Pages: 1-10

    • DOI

      10.1109/ssci50451.2021.9659893

    • Related Report
      2021 Annual Research Report
    • Peer Reviewed / Open Access
  • [Journal Article] Learnability of convolutional neural networks for infinite dimensional input via mixed and anisotropic smoothness2022

    • Author(s)
      Sho Okumoto and Taiji Suzuki
    • Journal Title

      ICLR2022

      Volume: 10

    • Related Report
      2021 Annual Research Report
    • Peer Reviewed / Open Access
  • [Journal Article] Particle Stochastic Dual Coordinate Ascent: Exponential convergent algorithm for mean field neural network optimization2022

    • Author(s)
      Kazusato Oko, Taiji Suzuki, Atsushi Nitanda, and Denny Wu
    • Journal Title

      ICLR2022

      Volume: 10

    • Related Report
      2021 Annual Research Report
    • Peer Reviewed / Open Access / Int'l Joint Research
  • [Journal Article] Understanding the Variance Collapse of SVGD in High Dimensions2022

    • Author(s)
      Jimmy Ba, Murat A Erdogdu, Marzyeh Ghassemi, Shengyang Sun, Taiji Suzuki, Denny Wu, and Tianzong Zhang
    • Journal Title

      ICLR2022

      Volume: 10

    • Related Report
      2021 Annual Research Report
    • Peer Reviewed / Open Access / Int'l Joint Research
  • [Journal Article] Convex Analysis of the Mean Field Langevin Dynamics2022

    • Author(s)
      Atsushi Nitanda, Denny Wu, Taiji Suzuki
    • Journal Title

      AISTATS2022, Proceedings of Machine Learning Research

      Volume: 151

    • Related Report
      2021 Annual Research Report
    • Peer Reviewed / Open Access / Int'l Joint Research
  • [Journal Article] Statistical Theory of Deep Learning2021

    • Author(s)
      鈴木 大慈
    • Journal Title

      Journal of the Japan Statistical Society, Japanese Issue

      Volume: 50 Issue: 2 Pages: 229-256

    • DOI

      10.11329/jjssj.50.229

    • NAID

      130007995093

    • ISSN
      0389-5602, 2189-1478
    • Year and Date
      2021-03-05
    • Related Report
      2020 Annual Research Report
    • Peer Reviewed / Open Access
  • [Journal Article] Gradient Descent in RKHS with Importance Labeling2021

    • Author(s)
      Tomoya Murata, and Taiji Suzuki
    • Journal Title

      AISTATS2021, Proceedings of Machine Learning Research

      Volume: 130

    • Related Report
      2021 Annual Research Report
    • Peer Reviewed / Open Access
  • [Journal Article] Exponential Convergence Rates of Classification Errors on Learning with SGD and Random Features2021

    • Author(s)
      Shingo Yashima, Atsushi Nitanda, Taiji Suzuki
    • Journal Title

      AISTATS2021, Proceedings of Machine Learning Research

      Volume: 130

    • Related Report
      2021 Annual Research Report
    • Peer Reviewed / Open Access
  • [Journal Article] Optimal Rates for Averaged Stochastic Gradient Descent under Neural Tangent Kernel Regime2021

    • Author(s)
      Atsushi Nitanda, and Taiji Suzuki
    • Journal Title

      ICLR2021

      Volume: 9

    • Related Report
      2021 Annual Research Report
    • Peer Reviewed / Open Access
  • [Journal Article] When Does Preconditioning Help or Hurt Generalization?2021

    • Author(s)
      Shun-ichi Amari, Jimmy Ba, Roger Grosse, Xuechen Li, Atsushi Nitanda, Taiji Suzuki, Denny Wu, Ji Xu
    • Journal Title

      ICLR2021

      Volume: 9

    • Related Report
      2021 Annual Research Report
    • Peer Reviewed / Open Access / Int'l Joint Research
  • [Journal Article] Benefit of deep learning with non-convex noisy gradient descent: Provable excess risk bound and superiority to kernel methods2021

    • Author(s)
      Taiji Suzuki, Shunta Akiyama
    • Journal Title

      ICLR2020

      Volume: 9

    • Related Report
      2021 Annual Research Report
    • Peer Reviewed / Open Access
  • [Journal Article] Estimation error analysis of deep learning on the regression problem on the variable exponent Besov space2021

    • Author(s)
      Tsuji Kazuma、Suzuki Taiji
    • Journal Title

      Electronic Journal of Statistics

      Volume: 15 Issue: 1 Pages: 1869-1908

    • DOI

      10.1214/21-ejs1828

    • Related Report
      2021 Annual Research Report 2020 Annual Research Report
    • Peer Reviewed / Open Access
  • [Journal Article] Sharp characterization of optimal minibatch size for stochastic finite sum convex optimization2021

    • Author(s)
      Nitanda Atsushi, Murata Tomoya, Suzuki Taiji
    • Journal Title

      Knowledge and Information Systems

      Volume: 63 Issue: 9 Pages: 2513-2539

    • DOI

      10.1007/s10115-021-01593-1

    • Related Report
      2021 Annual Research Report
    • Peer Reviewed / Open Access
  • [Journal Article] Selective inference for latent block models2021

    • Author(s)
      Watanabe Chihiro、Suzuki Taiji
    • Journal Title

      Electronic Journal of Statistics

      Volume: 15 Issue: 1 Pages: 3137-3183

    • DOI

      10.1214/21-ejs1853

    • Related Report
      2021 Annual Research Report
    • Peer Reviewed / Open Access
  • [Journal Article] Decomposable-Net: Scalable Low-Rank Compression for Neural Networks2021

    • Author(s)
      Yaguchi Atsushi、Suzuki Taiji、Nitta Shuhei、Sakata Yukinobu、Tanizawa Akiyuki
    • Journal Title

      Proceedings of the Thirtieth International Joint Conference on Artificial Intelligence

      Volume: 13 Pages: 3249-3256

    • DOI

      10.24963/ijcai.2021/447

    • Related Report
      2021 Annual Research Report
    • Peer Reviewed / Open Access
  • [Journal Article] Bias-Variance Reduced Local SGD for Less Heterogeneous Federated Learning2021

    • Author(s)
      Tomoya Murata, Taiji Suzuki
    • Journal Title

      ICML2021, Proceedings of Machine Learning Research

      Volume: 139

    • Related Report
      2021 Annual Research Report
    • Peer Reviewed / Open Access
  • [Journal Article] Quantitative Understanding of VAE as a Non-linearly Scaled Isometric Embedding2021

    • Author(s)
      Akira Nakagawa, Keizo Kato, Taiji Suzuki
    • Journal Title

      ICML2021, Proceedings of Machine Learning Research

      Volume: 139

    • Related Report
      2021 Annual Research Report
    • Peer Reviewed / Open Access
  • [Journal Article] On Learnability via Gradient Method for Two-Layer ReLU Neural Networks in Teacher-Student Setting2021

    • Author(s)
      Shunta Akiyama, Taiji Suzuki
    • Journal Title

      ICML2021, Proceedings of Machine Learning Research

      Volume: 139

    • Related Report
      2021 Annual Research Report
    • Peer Reviewed / Open Access
  • [Journal Article] Differentiable Multiple Shooting Layers2021

    • Author(s)
      Stefano Massaroli, Michael Poli, Sho Sonoda, Taiji Suzuki, Jinkyoo Park, Atsushi Yamashita, Hajime Asama
    • Journal Title

      Advances in Neural Information Processing Systems

      Volume: 34

    • Related Report
      2021 Annual Research Report
    • Peer Reviewed / Open Access / Int'l Joint Research
  • [Journal Article] Deep learning is adaptive to intrinsic dimensionality of model smoothness in anisotropic Besov space2021

    • Author(s)
      Taiji Suzuki, Atsushi Nitanda
    • Journal Title

      Advances in Neural Information Processing Systems

      Volume: 34

    • Related Report
      2021 Annual Research Report
    • Peer Reviewed / Open Access
  • [Journal Article] Particle Dual Averaging: Optimization of Mean Field Neural Networks with Global Convergence Rate Analysis2021

    • Author(s)
      Atsushi Nitanda, Denny Wu, Taiji Suzuki
    • Journal Title

      Advances in Neural Information Processing Systems

      Volume: 34

    • Related Report
      2021 Annual Research Report
    • Peer Reviewed / Open Access / Int'l Joint Research
  • [Journal Article] Goodness-of-fit test for latent block models2021

    • Author(s)
      Watanabe Chihiro、Suzuki Taiji
    • Journal Title

      Computational Statistics & Data Analysis

      Volume: 154 Pages: 107090-107090

    • DOI

      10.1016/j.csda.2020.107090

    • Related Report
      2020 Annual Research Report
    • Peer Reviewed / Open Access
  • [Journal Article] Spectral Pruning: Compressing Deep Neural Networks via Spectral Analysis and its Generalization Error2021

    • Author(s)
      Suzuki Taiji、Abe Hiroshi、Murata Tomoya、Horiuchi Shingo、Ito Kotaro、Wachi Tokuma、Hirai So、Yukishima Masatoshi、Nishimura Tomoaki
    • Journal Title

      Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence

      Volume: Main track Pages: 2839-2846

    • DOI

      10.24963/ijcai.2020/393

    • Related Report
      2020 Annual Research Report
    • Peer Reviewed / Open Access
  • [Journal Article] A reproducing kernel Hilbert space approach to high dimensional partially varying coefficient model2020

    • Author(s)
      Lv Shaogao、Fan Zengyan、Lian Heng、Suzuki Taiji、Fukumizu Kenji
    • Journal Title

      Computational Statistics & Data Analysis

      Volume: 152 Pages: 107039-107039

    • DOI

      10.1016/j.csda.2020.107039

    • Related Report
      2020 Annual Research Report
    • Peer Reviewed / Open Access / Int'l Joint Research
  • [Journal Article] Independently Interpretable Lasso for Generalized Linear Models2020

    • Author(s)
      Takada Masaaki、Suzuki Taiji、Fujisawa Hironori
    • Journal Title

      Neural Computation

      Volume: 32 Issue: 6 Pages: 1168-1221

    • DOI

      10.1162/neco_a_01279

    • Related Report
      2020 Annual Research Report
    • Peer Reviewed / Open Access
  • [Journal Article] Compression based bound for non-compressed network: unified generalization error analysis of large compressible deep neural network2020

    • Author(s)
      Taiji Suzuki, Hiroshi Abe, Tomoaki Nishimura
    • Journal Title

      ICLR2020

      Volume: 8

    • Related Report
      2020 Annual Research Report
    • Peer Reviewed / Open Access
  • [Journal Article] Graph Neural Networks Exponentially Lose Expressive Power for Node Classification2020

    • Author(s)
      Kenta Oono, Taiji Suzuki
    • Journal Title

      ICLR2020

      Volume: 8

    • Related Report
      2020 Annual Research Report
    • Peer Reviewed / Open Access
  • [Journal Article] Generalization of Two-layer Neural Networks: An Asymptotic Viewpoint2020

    • Author(s)
      Jimmy Ba, Murat Erdogdu, Taiji Suzuki, Denny Wu, Tianzong Zhang
    • Journal Title

      ICLR2020

      Volume: 8

    • Related Report
      2020 Annual Research Report
    • Peer Reviewed / Open Access / Int'l Joint Research
  • [Journal Article] Understanding of Generalization in Deep Learning via Tensor Methods2020

    • Author(s)
      Jingling Li, Yanchao Sun, Ziyin Liu, Taiji Suzuki and Furong Huang
    • Journal Title

      AISTATS2020, Proceedings of Machine Learning Research

      Volume: 108

    • Related Report
      2020 Annual Research Report
    • Peer Reviewed / Open Access / Int'l Joint Research
  • [Journal Article] Functional Gradient Boosting for Learning Residual-like Networks with Statistical Guarantees2020

    • Author(s)
      Atsushi Nitanda, Taiji Suzuki
    • Journal Title

      AISTATS2020, Proceedings of Machine Learning Research

      Volume: 108

    • Related Report
      2020 Annual Research Report
    • Peer Reviewed / Open Access
  • [Journal Article] Domain Adaptation Regularization for Spectral Pruning2020

    • Author(s)
      Laurent Dillard, Yosuke Shinya, Taiji Suzuki
    • Journal Title

      BMVC2020 (British Machine Vision Conference 2020)

      Volume: 31

    • Related Report
      2020 Annual Research Report
    • Peer Reviewed / Open Access
  • [Journal Article] Optimization and Generalization Analysis of Transduction through Gradient Boosting and Application to Multi-scale Graph Neural Networks2020

    • Author(s)
      Kenta Oono, Taiji Suzuki
    • Journal Title

      Advances in Neural Information Processing Systems

      Volume: 33

    • Related Report
      2020 Annual Research Report
    • Peer Reviewed / Open Access
  • [Journal Article] Generalization bound of globally optimal non-convex neural network training: Transportation map estimation by infinite dimensional Langevin dynamics2020

    • Author(s)
      Taiji Suzuki
    • Journal Title

      Advances in Neural Information Processing Systems

      Volume: 33

    • Related Report
      2020 Annual Research Report
    • Peer Reviewed / Open Access
  • [Journal Article] Bayesian optimization design for dose‐finding based on toxicity and efficacy outcomes in phase I/ II clinical trials2020

    • Author(s)
      Takahashi Ami、Suzuki Taiji
    • Journal Title

      Pharmaceutical Statistics

      Volume: 20(3) Issue: 3 Pages: 422-439

    • DOI

      10.1002/pst.2085

    • Related Report
      2020 Annual Research Report
    • Peer Reviewed / Open Access
  • [Journal Article] 数理工学とAI2020

    • Author(s)
      鈴木大慈
    • Journal Title

      数理科学

      Volume: 685

    • Related Report
      2020 Annual Research Report
  • [Journal Article] On the minimax optimality and superiority of deep neural network learning over sparse parameter spaces2020

    • Author(s)
      Satoshi Hayakawa and Taiji Suzuki
    • Journal Title

      Neural Networks

      Volume: 123 Pages: 343-361

    • DOI

      10.1016/j.neunet.2019.12.014

    • Related Report
      2019 Annual Research Report
    • Peer Reviewed / Open Access
  • [Journal Article] Adaptivity of deep ReLU network for learning in Besov and mixed smooth Besov spaces: optimal rate and curse of dimensionality2019

    • Author(s)
      Taiji Suzuki
    • Journal Title

      he 7th International Conference on Learning Representations (ICLR2019)

      Volume: 7

    • Related Report
      2019 Annual Research Report
    • Peer Reviewed / Open Access
  • [Journal Article] Stochastic Gradient Descent with Exponential Convergence Rates of Expected Classification Errors2019

    • Author(s)
      Atsushi Nitanda, Taiji Suzuki
    • Journal Title

      Proceedings of Machine Learning Research (AISTATS2019)

      Volume: 89

    • Related Report
      2019 Annual Research Report
    • Peer Reviewed / Open Access
  • [Journal Article] Cross-domain Recommendation via Deep Domain Adaptation2019

    • Author(s)
      Heishiro Kanagawa, Hayato Kobayashi, Nobuyuki Shimizu, Yukihiro Tagami, and Taiji Suzuki
    • Journal Title

      Advances in Information Retrieval 41st European Conference on IR Research, ECIR 2019

      Volume: なし

    • Related Report
      2019 Annual Research Report
    • Peer Reviewed / Open Access
  • [Journal Article] Approximation and Non-parametric Estimation of ResNet-type Convolutional Neural Networks2019

    • Author(s)
      Kenta Oono and Taiji Suzuki
    • Journal Title

      Proceedings of Machine Learning Research (ICML2019)

      Volume: 97

    • Related Report
      2019 Annual Research Report
    • Peer Reviewed / Open Access
  • [Journal Article] Sharp Characterization of Optimal Minibatch Size for Stochastic Finite Sum Convex Optimization2019

    • Author(s)
      Nitanda Atsushi、Murata Tomoya、Suzuki Taiji
    • Journal Title

      2019 IEEE International Conference on Data Mining (ICDM)

      Volume: なし Pages: 488-497

    • DOI

      10.1109/icdm.2019.00059

    • Related Report
      2019 Annual Research Report
    • Peer Reviewed / Open Access
  • [Journal Article] Understanding the Effects of Pre-training for Object Detectors via Eigenspectrum2019

    • Author(s)
      Yosuke Shinya, Edgar Simo-Serra, and Taiji Suzuki
    • Journal Title

      ICCV2019, Neural Architects Workshop

      Volume: なし

    • Related Report
      2019 Annual Research Report
  • [Journal Article] Statistical Learning Theory and Its Application to Deep Learning2018

    • Author(s)
      鈴木 大慈
    • Journal Title

      Bulletin of the Japan Society for Industrial and Applied Mathematics

      Volume: 28 Issue: 4 Pages: 28-33

    • DOI

      10.11540/bjsiam.28.4_28

    • NAID

      130007621094

    • ISSN
      2432-1982
    • Year and Date
      2018-12-21
    • Related Report
      2018 Annual Research Report
    • Open Access
  • [Journal Article] Generalization Error Analysis of Gaussian Process Regression via Theories of Reproducing Kernel Hilbert Spaces2018

    • Author(s)
      鈴木 大慈
    • Journal Title

      SYSTEMS, CONTROL AND INFORMATION

      Volume: 62 Issue: 10 Pages: 396-404

    • DOI

      10.11509/isciesci.62.10_396

    • NAID

      130007632579

    • ISSN
      0916-1600, 2424-1806
    • Year and Date
      2018-10-15
    • Related Report
      2018 Annual Research Report
    • Open Access
  • [Journal Article] Stochastic Optimization for Machine Learning2018

    • Author(s)
      鈴木 大慈
    • Journal Title

      Bulletin of the Japan Society for Industrial and Applied Mathematics

      Volume: 28 Issue: 3 Pages: 27-33

    • DOI

      10.11540/bjsiam.28.3_27

    • NAID

      130007552778

    • ISSN
      2432-1982
    • Year and Date
      2018-09-26
    • Related Report
      2018 Annual Research Report
    • Open Access
  • [Journal Article] Overfitting and Regularization2018

    • Author(s)
      鈴木 大慈
    • Journal Title

      Bulletin of the Japan Society for Industrial and Applied Mathematics

      Volume: 28 Issue: 2 Pages: 28-33

    • DOI

      10.11540/bjsiam.28.2_28

    • NAID

      130007490723

    • ISSN
      2432-1982
    • Year and Date
      2018-06-26
    • Related Report
      2018 Annual Research Report
    • Open Access
  • [Journal Article] Overview of Machine Learning2018

    • Author(s)
      鈴木 大慈
    • Journal Title

      Bulletin of the Japan Society for Industrial and Applied Mathematics

      Volume: 28 Issue: 1 Pages: 32-37

    • DOI

      10.11540/bjsiam.28.1_32

    • NAID

      130007386557

    • ISSN
      2432-1982
    • Year and Date
      2018-03-23
    • Related Report
      2018 Annual Research Report
    • Open Access
  • [Journal Article] Fast learning rate of non-sparse multiple kernel learning and optimal regularization strategies2018

    • Author(s)
      Suzuki Taiji
    • Journal Title

      Electronic Journal of Statistics

      Volume: 12 Issue: 2 Pages: 2141-2192

    • DOI

      10.1214/18-ejs1399

    • Related Report
      2018 Annual Research Report
    • Peer Reviewed / Open Access
  • [Journal Article] Generalized ridge estimator and model selection criteria in multivariate linear regression2018

    • Author(s)
      Mori Yuichi、Suzuki Taiji
    • Journal Title

      Journal of Multivariate Analysis

      Volume: 165 Pages: 243-261

    • DOI

      10.1016/j.jmva.2017.12.006

    • Related Report
      2018 Annual Research Report
    • Peer Reviewed / Open Access
  • [Journal Article] Fast generalization error bound of deep learning from a kernel perspective2018

    • Author(s)
      Taiji Suzuki
    • Journal Title

      Proceedings of Machine Learning Research (AISTATS2018)

      Volume: 84

    • Related Report
      2018 Annual Research Report
    • Peer Reviewed / Open Access
  • [Journal Article] Independently Interpretable Lasso: A New Regularizer for Sparse Regression with Uncorrelated Variables2018

    • Author(s)
      Masaaki Takada, Taiji Suzuki, and Hironori Fujisawa
    • Journal Title

      Proceedings of Machine Learning Research (AISTATS2018)

      Volume: 84

    • Related Report
      2018 Annual Research Report
    • Peer Reviewed / Open Access
  • [Journal Article] Gradient Layer: Enhancing the Convergence of Adversarial Training for Generative Models2018

    • Author(s)
      Atsushi Nitanda and Taiji Suzuki
    • Journal Title

      Proceedings of Machine Learning Research (AISTATS2018)

      Volume: 84

    • Related Report
      2018 Annual Research Report
    • Peer Reviewed / Open Access
  • [Journal Article] Functional Gradient Boosting based on Residual Network Perception2018

    • Author(s)
      Atsushi Nitanda and Taiji Suzuki
    • Journal Title

      Proceedings of Machine Learning Research (ICML2018)

      Volume: 80

    • Related Report
      2018 Annual Research Report
    • Peer Reviewed / Open Access
  • [Journal Article] Adam Induces Implicit Weight Sparsity in Rectifier Neural Networks2018

    • Author(s)
      Yaguchi Atsushi、Suzuki Taiji、Asano Wataru、Nitta Shuhei、Sakata Yukinobu、Tanizawa Akiyuki
    • Journal Title

      IEEE International Conference on Machine Learning and Applications (ICMLA)

      Volume: 17

    • Related Report
      2018 Annual Research Report
    • Peer Reviewed / Open Access
  • [Journal Article] Sample Efficient Stochastic Gradient Iterative Hard Thresholding Method for Stochastic Sparse Linear Regression with Limited Attribute Observation2018

    • Author(s)
      Tomoya Murata, and Taiji Suzuki
    • Journal Title

      Advances in Neural Information Processing Systems

      Volume: 31

    • Related Report
      2018 Annual Research Report
    • Peer Reviewed / Open Access
  • [Journal Article] Short-term local weather forecast using dense weather station by deep neural network2018

    • Author(s)
      Yonekura Kazuo、Hattori Hitoshi、Suzuki Taiji
    • Journal Title

      2018 IEEE International Conference on Big Data (Big Data)

      Volume: 1 Pages: 10-13

    • DOI

      10.1109/bigdata.2018.8622195

    • Related Report
      2018 Annual Research Report
    • Peer Reviewed / Open Access
  • [Journal Article] 数理のクロスロード/機械学習の数理/(2) カーネル法とニューラルネットワーク2018

    • Author(s)
      鈴木大慈
    • Journal Title

      数学セミナー

      Volume: 686

    • Related Report
      2018 Annual Research Report
  • [Journal Article] 数理のクロスロード/機械学習の数理/(1) 深層学習の理論2018

    • Author(s)
      鈴木大慈
    • Journal Title

      数学セミナー

      Volume: 685

    • Related Report
      2018 Annual Research Report
  • [Journal Article] 「機械学習と数理統計」~統計的学習理論を通じて~2018

    • Author(s)
      鈴木大慈
    • Journal Title

      数理科学

      Volume: 662

    • Related Report
      2018 Annual Research Report
  • [Presentation] 深層学習の数理2022

    • Author(s)
      鈴木大慈
    • Organizer
      日本数学会企画特別講演
    • Related Report
      2021 Annual Research Report
    • Invited
  • [Presentation] Benefit of deep learning: Efficiency of function estimation and its optimization guarantee2021

    • Author(s)
      Taiji Suzuki
    • Organizer
      KSIAM2021 (Special Session: CJK-SIAM mini-symposium I: Emerging Mathematics in AI)
    • Related Report
      2021 Annual Research Report
    • Int'l Joint Research / Invited
  • [Presentation] 深層学習の理論解析:非線形性と最適化動力学2021

    • Author(s)
      鈴木大慈
    • Organizer
      『非線形動力学に基づく次世代AIと基盤技術』に関するシンポジウム
    • Related Report
      2021 Annual Research Report
    • Invited
  • [Presentation] Deep Learning Theory from Statistics to Optimization2021

    • Author(s)
      Taiji Suzuki
    • Organizer
      Tutorial talk, The 6th Asian Conference on Pattern Recognition (ACPR2021)
    • Related Report
      2021 Annual Research Report
    • Int'l Joint Research / Invited
  • [Presentation] Deep Learning Theory and Optimization2021

    • Author(s)
      Taiji Suzuki
    • Organizer
      Tutorial talk, The Online Asian Machine Learning School (OAMLS), The 13th Asian Conference on Machine Learning (ACML2021)
    • Related Report
      2021 Annual Research Report
    • Int'l Joint Research / Invited
  • [Presentation] Optimality and superiority of deep learning for estimating functions in variants of Besov spaces2021

    • Author(s)
      Taiji Suzuki, Atsushi Nitanda, and Kazuma Tsuji
    • Organizer
      4th International Conference on Econometrics and Statistics (EcoSta2021)
    • Related Report
      2021 Annual Research Report
    • Int'l Joint Research
  • [Presentation] ResNetのモデル圧縮手法の提案および圧縮誤差理論解析2021

    • Author(s)
      平川 雅人,鈴木 大慈
    • Organizer
      2021年度統計関連学会連合大会
    • Related Report
      2021 Annual Research Report
  • [Presentation] 教師生徒設定における勾配法による二層ReLU ニューラルネットワークの学習可能性について2021

    • Author(s)
      秋山 俊太,鈴木 大慈
    • Organizer
      2021年度統計関連学会連合大会
    • Related Report
      2021 Annual Research Report
  • [Presentation] 平均場ニューラルネットワークの効率的最適化法2021

    • Author(s)
      二反田 篤史,大古 一聡,Denny Wu,鈴木 大慈
    • Organizer
      2021年度統計関連学会連合大会
    • Related Report
      2021 Annual Research Report
  • [Presentation] リンク予測におけるバイアス項によるグラフニューラルネットワークの表現力強化2021

    • Author(s)
      長谷川 貴大,鈴木 大慈
    • Organizer
      2021年度統計関連学会連合大会
    • Related Report
      2021 Annual Research Report
  • [Presentation] Particle Stochastic Dual Coordinate Ascent: Exponential convergent algorithm for mean field neural network optimization2021

    • Author(s)
      大古 一聡, 鈴木 大慈, 二反田 篤史, Wenny Wu
    • Organizer
      第24回情報論的学習理論ワークショップ
    • Related Report
      2021 Annual Research Report
  • [Presentation] ノイズ付き勾配法を用いた教師生徒設定における二層ReLuニューラルネットワークの学習2021

    • Author(s)
      秋山俊太, 鈴木大慈
    • Organizer
      第24回情報論的学習理論ワークショップ
    • Related Report
      2021 Annual Research Report
  • [Presentation] 多層ニューラルネットワークモデルに基づくmatrix reordering2021

    • Author(s)
      渡邊千紘, 鈴木大慈
    • Organizer
      第24回情報論的学習理論ワークショップ
    • Related Report
      2021 Annual Research Report
  • [Presentation] CGから実写への転移学習におけるスケーリング則2021

    • Author(s)
      Hiroaki Mikami, Kenji Fukumizu, Shogo Murai, Shuji Suzuki, Yuta Kikuchi, Taiji Suzuki, Shin-ichi Maeda, Kohei Hayashi
    • Organizer
      第24回情報論的学習理論ワークショップ
    • Related Report
      2021 Annual Research Report
  • [Presentation] 深層ニューラルネットワークの近似理論と適応能力2021

    • Author(s)
      鈴木大慈
    • Organizer
      数値解析セミナー
    • Related Report
      2021 Annual Research Report
    • Invited
  • [Presentation] Optimization and statistical efficiency of neural network in mean field regimes2021

    • Author(s)
      Taiji Suzuki
    • Organizer
      Workshop on Functional Inference and Machine Intelligence
    • Related Report
      2020 Annual Research Report
    • Int'l Joint Research / Invited
  • [Presentation] 深層学習の理論2021

    • Author(s)
      鈴木大慈
    • Organizer
      言語処理学会第27回年次大会(NLP2021)
    • Related Report
      2020 Annual Research Report
    • Invited
  • [Presentation] Recent theoretical developments about statistical and optimization efficiency of deep learning2021

    • Author(s)
      Taiji Suzuki
    • Organizer
      First Australia-Japan Workshop on Machine Learning
    • Related Report
      2020 Annual Research Report
  • [Presentation] Benefit of deep learning: Statistical efficiency and optimization guarantee with non-convex noisy gradient descent2021

    • Author(s)
      Taiji Suzuki
    • Organizer
      Statistics Seminar at University of Bristol
    • Related Report
      2020 Annual Research Report
    • Int'l Joint Research / Invited
  • [Presentation] 深層学習の最適化と汎化誤差:非凸性の観点から2020

    • Author(s)
      鈴木大慈
    • Organizer
      物性研究所短期研究会 「量子多体計算と第一原理計算の新展開」(FQCS2020)
    • Related Report
      2020 Annual Research Report
    • Invited
  • [Presentation] 深層学習の数理:カーネル法,スパース推定との接点2020

    • Author(s)
      鈴木大慈
    • Organizer
      画像の認識・理解シンポジウム MIRU2020
    • Related Report
      2020 Annual Research Report
    • Invited
  • [Presentation] 機械学習における最適化理論と学習理論的側面2020

    • Author(s)
      鈴木大慈
    • Organizer
      第17回組合せ最適化セミナー
    • Related Report
      2020 Annual Research Report
    • Invited
  • [Presentation] 無限次元勾配ランジュバン動力学による深層学習の最適化理論と汎化誤差解析2020

    • Author(s)
      鈴木大慈
    • Organizer
      九州大学統計科学セミナー
    • Related Report
      2020 Annual Research Report
    • Invited
  • [Presentation] 無限次元勾配ランジュバン動力学による深層学習の最適化と汎化誤差解析2020

    • Author(s)
      鈴木大慈
    • Organizer
      第23回情報論的学習理論ワークショップ (IBIS2020)
    • Related Report
      2020 Annual Research Report
    • Invited
  • [Presentation] 無限次元勾配ランジュバン動力学によるニューラルネットワークの最適化理論と汎化誤差解析2020

    • Author(s)
      鈴木 大慈
    • Organizer
      2020年度統計関連学会連合大会
    • Related Report
      2020 Annual Research Report
  • [Presentation] 勾配ブースティング法を用いたマルチスケールグラフニューラルネットの学習とその最適化・汎化性能解析2020

    • Author(s)
      大野 健太,鈴木 大慈
    • Organizer
      2020年度統計関連学会連合大会
    • Related Report
      2020 Annual Research Report
  • [Presentation] 確率的勾配降下法のNTK理論による最適収束率2020

    • Author(s)
      二反田 篤史,鈴木 大慈
    • Organizer
      2020年度統計関連学会連合大会
    • Related Report
      2020 Annual Research Report
  • [Presentation] Latent Block Modelのブロック構造に関する選択的推論2020

    • Author(s)
      渡邊 千紘,鈴木 大慈
    • Organizer
      2020年度統計関連学会連合大会
    • Related Report
      2020 Annual Research Report
  • [Presentation] 再生核ヒルベルト空間上の非凸最適化問題に対する勾配ランジュバン動力学の収束誤差解析2020

    • Author(s)
      佐藤 寛司,鈴木 大慈
    • Organizer
      2020年度統計関連学会連合大会
    • Related Report
      2020 Annual Research Report
  • [Presentation] 変動指数Besov空間の回帰問題に対する深層学習の推定誤差解析2020

    • Author(s)
      辻 和真,鈴木 大慈
    • Organizer
      2020年度統計関連学会連合大会
    • Related Report
      2020 Annual Research Report
  • [Presentation] マルチスケールグラフニューラルネットの勾配ブースティング法による解析2020

    • Author(s)
      大野 健太, 鈴木 大慈
    • Organizer
      第23回情報論的学習理論ワークショップ (IBIS2020)
    • Related Report
      2020 Annual Research Report
  • [Presentation] 変動指数Besov 空間の回帰問題に対する深層学習の推定誤差解析2020

    • Author(s)
      辻 和真, 鈴木 大慈
    • Organizer
      第23回情報論的学習理論ワークショップ (IBIS2020)
    • Related Report
      2020 Annual Research Report
  • [Presentation] 粒子双対平均化法:平均場ニューラルネットワークの大域的収束保証付最適化法2020

    • Author(s)
      二反田 篤史, Denny Wu, 鈴木 大慈
    • Organizer
      第23回情報論的学習理論ワークショップ (IBIS2020)
    • Related Report
      2020 Annual Research Report
  • [Presentation] Statistical efficiency and optimization of deep learning from the view point of non-convexity2020

    • Author(s)
      Taiji Suzuki
    • Organizer
      Applied Mathematics and Computation Seminar at UMass Amherst
    • Related Report
      2020 Annual Research Report
    • Int'l Joint Research / Invited
  • [Presentation] Statistical efficiency and optimization of deep learning from the view point of non-convexity2020

    • Author(s)
      Taiji Suzuki
    • Organizer
      "AI + Math" Colloquia, Institute of Natural Sciences, Shanghai Jiao Tong University
    • Related Report
      2020 Annual Research Report
    • Int'l Joint Research / Invited
  • [Presentation] Statistical efficiency and optimization of deep learning from the viewpoint of non-convexity2020

    • Author(s)
      Taiji Suzuki
    • Organizer
      Math Machine Learning seminar MPI MIS + UCLA
    • Related Report
      2020 Annual Research Report
    • Int'l Joint Research / Invited
  • [Presentation] 数学で解き明かす深層学習の原理2020

    • Author(s)
      鈴木大慈
    • Organizer
      CREST・さきがけ・AIMaP合同シンポジウム『数学パワーが世界を変える』
    • Related Report
      2019 Annual Research Report
    • Invited
  • [Presentation] Fast learning rate of neural tangent kernel learning and nonconvex optimization by infinite dimensional Langevin dynamics in RKHS2020

    • Author(s)
      Taiji Suzuki
    • Organizer
      Workshop on Functional Inference and Machine Intelligence
    • Related Report
      2019 Annual Research Report
    • Int'l Joint Research / Invited
  • [Presentation] Generalization error bound of deep learning via spectral analysis and its application to model compression2019

    • Author(s)
      Taiji Suzuki
    • Organizer
      3rd International Conference on Econometrics and Statistics (EcoSta2019)
    • Related Report
      2019 Annual Research Report
    • Int'l Joint Research
  • [Presentation] Exponential Convergence of Stochastic Gradient Descent for Binary Classification Problems2019

    • Author(s)
      Atsushi Nitanda, Taiji Suzuki
    • Organizer
      Data Science, Statistics & Visualization (DSSV2019)
    • Related Report
      2019 Annual Research Report
    • Int'l Joint Research
  • [Presentation] Toward Understanding Expressive Power of Graph Convolutional Neural Networks2019

    • Author(s)
      Kenta Oono, Taiji Suzuki
    • Organizer
      Data Science, Statistics & Visualization (DSSV2019)
    • Related Report
      2019 Annual Research Report
    • Int'l Joint Research
  • [Presentation] スパースなパラメータ空間における深層ニューラルネットワークのミニマックス最適性および優位性について2019

    • Author(s)
      早川知志, 鈴木大慈
    • Organizer
      2019年度統計関連学会連合大会
    • Related Report
      2019 Annual Research Report
  • [Presentation] Bayesian optimization for dose finding studies2019

    • Author(s)
      高橋亜実, 鈴木大慈
    • Organizer
      2019年度統計関連学会連合大会
    • Related Report
      2019 Annual Research Report
  • [Presentation] 深層ニューラルネットワークの圧縮可能性を用いた非圧縮ネットワークの汎化誤差解析2019

    • Author(s)
      鈴木大慈
    • Organizer
      2019年度統計関連学会連合大会
    • Related Report
      2019 Annual Research Report
  • [Presentation] 識別問題に対する高次元二層ニューラルネットの勾配法による汎化性能解析2019

    • Author(s)
      二反田 篤史, 鈴木大慈
    • Organizer
      2019年度統計関連学会連合大会
    • Related Report
      2019 Annual Research Report
  • [Presentation] グラフスペクトルを介した深層グラフモデルの漸近挙動解析2019

    • Author(s)
      大野健太, 鈴木大慈
    • Organizer
      2019年度統計関連学会連合大会
    • Related Report
      2019 Annual Research Report
  • [Presentation] カーネル法におけるrandom featureを用いた確率的勾配法の期待識別誤差の線形収束性2019

    • Author(s)
      八嶋晋吾, 二反田 篤史, 鈴木大慈
    • Organizer
      2019年度統計関連学会連合大会
    • Related Report
      2019 Annual Research Report
  • [Presentation] Random Featureを用いた確率的勾配法の期待識別誤差の収束解析2019

    • Author(s)
      八嶋晋吾, 二反田篤史, 鈴木大慈
    • Organizer
      IBIS2019
    • Related Report
      2019 Annual Research Report
  • [Presentation] Latent Block Modelのクラスタ数に関する適合度検定2019

    • Author(s)
      渡邊千紘, 鈴木大慈
    • Organizer
      IBIS2019
    • Related Report
      2019 Annual Research Report
  • [Presentation] 高次元二層ニューラルネットに対する勾配降下法による識別誤差の大域収束性と汎化性能解析2019

    • Author(s)
      二反田篤史, 鈴木大慈
    • Organizer
      IBIS2019
    • Related Report
      2019 Annual Research Report
  • [Presentation] Generalization error of deep learning and its learning dynamics from compression ability point of view2019

    • Author(s)
      Taiji Suzuki
    • Organizer
      The 11th Innovation with Statistics and Data Science (ICSA 2019)
    • Related Report
      2019 Annual Research Report
    • Int'l Joint Research
  • [Presentation] 深層ニューラルネットワークの適応能力:関数空間におけるスパース推定との接点2019

    • Author(s)
      鈴木大慈
    • Organizer
      第9回 脳型人工知能とその応用ミニワークショップ
    • Related Report
      2019 Annual Research Report
    • Invited
  • [Presentation] Adaptivity of deep learning in Besov space with its connection to sparse estimation2019

    • Author(s)
      Taiji Suzuki
    • Organizer
      Third International Workshop on Symbolic-Neural Learning (SNL-2019)
    • Related Report
      2019 Annual Research Report
    • Int'l Joint Research / Invited
  • [Presentation] Compression Based Bound for Non-compressed Deep Neural Network Models and Their Data Adaptivity2019

    • Author(s)
      Taiji Suzuki
    • Organizer
      Data Science, Statistics & Visualization (DSSV2019)
    • Related Report
      2019 Annual Research Report
    • Int'l Joint Research / Invited
  • [Presentation] Introduction to machine learning and deep learning theories: statistics and optimization2019

    • Author(s)
      Taiji Suzuki
    • Organizer
      4th International Symposium on Research and Education of Computational Science (RECS2019)
    • Related Report
      2019 Annual Research Report
    • Int'l Joint Research / Invited
  • [Presentation] 深層ニューラルネットワークの適応能力:関数空間におけるスパース推定との接点2019

    • Author(s)
      鈴木大慈
    • Organizer
      武蔵野大学数理工学シンポジウム2019
    • Related Report
      2019 Annual Research Report
    • Invited
  • [Presentation] Generalization analysis and optimization of deep learning: adaptivity and kernel view2019

    • Author(s)
      Taiji Suzuki
    • Organizer
      EPFL Machile Learning Seminer
    • Related Report
      2019 Annual Research Report
    • Int'l Joint Research / Invited
  • [Presentation] Estimation ability of deep learning with connection to sparse estimation in function space2019

    • Author(s)
      Taiji Suzuki
    • Organizer
      4TU AMI annual event Mathematics of Deep Learning
    • Related Report
      2019 Annual Research Report
    • Int'l Joint Research / Invited
  • [Presentation] 深層学習における汎化誤差理論とその応用および非凸確率的最適化2019

    • Author(s)
      鈴木大慈
    • Organizer
      第七回数理ファイナンス合宿型セミナー
    • Related Report
      2019 Annual Research Report
    • Invited
  • [Presentation] 深層学習における高次元性2019

    • Author(s)
      鈴木大慈
    • Organizer
      金融工学・数理計量ファイナンスの諸問題 2019
    • Related Report
      2019 Annual Research Report
    • Invited
  • [Presentation] 深層ニューラルネットワークの汎化誤差とそのスパース推定との接点2019

    • Author(s)
      鈴木大慈
    • Organizer
      応用統計ワークショップ
    • Related Report
      2018 Annual Research Report
    • Invited
  • [Presentation] Adaptivity of deep ReLU network and its generalization error analysis2019

    • Author(s)
      Taiji Suzuki
    • Organizer
      The Second Korea-Japan Machine Learning Workshop
    • Related Report
      2018 Annual Research Report
    • Int'l Joint Research / Invited
  • [Presentation] Compressing deep neural network and its generalization error analysis via kernel theory2019

    • Author(s)
      Taiji Suzuki
    • Organizer
      Reinforcement Learning & Biological Intelligence, learning from biology, learning for biology
    • Related Report
      2018 Annual Research Report
    • Int'l Joint Research / Invited
  • [Presentation] Besov空間における深層学習の汎化誤差解析およびモデル解析への応用2019

    • Author(s)
      鈴木大慈
    • Organizer
      愛媛大学理学部理学科数学・数理情報コース数学談話会
    • Related Report
      2018 Annual Research Report
    • Invited
  • [Presentation] 深層ニューラルネットワークの適応能力と汎化誤差解析2019

    • Author(s)
      鈴木大慈
    • Organizer
      AIMaPワークショップ「非ノイマン型計算、理論と応用」
    • Related Report
      2018 Annual Research Report
    • Invited
  • [Presentation] Generalization error of deep learning with connection to sparse estimation in function space2019

    • Author(s)
      Taiji Suzuki
    • Organizer
      Workshop on Functional Inference and Machine Intelligence
    • Related Report
      2018 Annual Research Report
    • Int'l Joint Research / Invited
  • [Presentation] Generalization Error and Compressibility of Deep Learning via Kernel Analysis2018

    • Author(s)
      Taiji Suzuki
    • Organizer
      Tokyo Deep Learning Workshop (Deep Learning: Theory, Algorithms, and Applications)
    • Related Report
      2018 Annual Research Report
    • Int'l Joint Research / Invited
  • [Presentation] 統計・機械学習における確率的最適化2018

    • Author(s)
      鈴木大慈
    • Organizer
      統計数理研究所公開講座
    • Related Report
      2018 Annual Research Report
    • Invited
  • [Presentation] 深層学習の統計的学習理論:カーネル法とウェーブレット解析による視点2018

    • Author(s)
      鈴木大慈
    • Organizer
      第3回統計・機械学習若手シンポジウム「統計・機械学習の交わりと拡がり」
    • Related Report
      2018 Annual Research Report
    • Invited
  • [Presentation] 機械学習における構造を利用した確率的最適化技法2018

    • Author(s)
      鈴木大慈
    • Organizer
      2018年電子情報通信学会基礎・境界ソサイエティ大会大会
    • Related Report
      2018 Annual Research Report
    • Invited
  • [Presentation] 深層学習の汎化誤差理論とそのモデル解析への応用2018

    • Author(s)
      鈴木大慈
    • Organizer
      2018年日本数学会秋季総合分科会
    • Related Report
      2018 Annual Research Report
    • Invited
  • [Presentation] 機械学習の現状と深層学習の数理2018

    • Author(s)
      鈴木大慈
    • Organizer
      山形大学データサイエンス推進室キックオフミーティング
    • Related Report
      2018 Annual Research Report
    • Invited
  • [Presentation] Adaptivity of Deep ReLU Network for Learning in Besov Spaces2018

    • Author(s)
      Taiji Suzuki
    • Organizer
      Forum "Math-for-Industry" 2018 - Big Data Analysis, AI, Fintech, Math in Finances and Economics -
    • Related Report
      2018 Annual Research Report
    • Int'l Joint Research / Invited
  • [Presentation] 深層学習のカーネル法による汎化誤差解析とその適応能力の評価2018

    • Author(s)
      鈴木大慈
    • Organizer
      京都大学数学教室・数理解析研究所談話会
    • Related Report
      2018 Annual Research Report
    • Invited
  • [Presentation] 強低ノイズ条件下識別問題に対する確率的勾配降下法の線形収束性2018

    • Author(s)
      二反田 篤史,鈴木 大慈
    • Organizer
      IBIS2018
    • Related Report
      2018 Annual Research Report
  • [Presentation] 確率的勾配降下法による期待識別誤差の線形収束性2018

    • Author(s)
      二反田 篤史,鈴木 大慈
    • Organizer
      統計関連学会連合大会
    • Related Report
      2018 Annual Research Report
  • [Presentation] Generalization error analysis of deep learning: avoiding curse of dimensionality and practical application2018

    • Author(s)
      Taiji Suzuki
    • Organizer
      統計関連学会連合大会,2018 CSA-KSS-JSS Joint International Sessions: Machine Learning
    • Related Report
      2018 Annual Research Report
    • Int'l Joint Research
  • [Presentation] 統計学と機械学習,そして人工知能2018

    • Author(s)
      鈴木 大慈
    • Organizer
      統計関連学会連合大会
    • Related Report
      2018 Annual Research Report
  • [Presentation] Sparse Modeling with Uncorrelated Variables2018

    • Author(s)
      Masaaki Takada, Taiji Suzuki and Hironori Fujisawa
    • Organizer
      統計関連学会連合大会
    • Related Report
      2018 Annual Research Report
  • [Presentation] Accelerated stochastic optimization for finite sum regularized empirical risk minimization2018

    • Author(s)
      Taiji Suzuki
    • Organizer
      First Conference on Discrete Optimization and Machine Learning
    • Related Report
      2018 Annual Research Report
    • Int'l Joint Research
  • [Presentation] Estimating nonlinear tensor product in infinite dimensional functional space by kernel and neural network models2018

    • Author(s)
      Taiji Suzuki
    • Organizer
      IMS-APRM2018
    • Related Report
      2018 Annual Research Report
    • Int'l Joint Research
  • [Presentation] 深層学習の汎化誤差理論とモデル圧縮への応用2018

    • Author(s)
      鈴木 大慈
    • Organizer
      「人工知能を用いた統合的ながん医療システムの開発」CRESTセミナー
    • Related Report
      2018 Annual Research Report
  • [Remarks] Taiji Suzuki's home page

    • URL

      http://ibis.t.u-tokyo.ac.jp/suzuki/

    • Related Report
      2020 Annual Research Report 2019 Annual Research Report
  • [Remarks] http://ibis.t.u-tokyo.ac.jp/suzuki/

    • Related Report
      2018 Annual Research Report
  • [Patent(Industrial Property Rights)] 気象予測システム、気象予測方法、および気象予測プログラム2018

    • Inventor(s)
      米倉一男,鈴木大慈
    • Industrial Property Rights Holder
      米倉一男,鈴木大慈
    • Industrial Property Rights Type
      特許
    • Industrial Property Number
      2018-227904
    • Filing Date
      2018
    • Related Report
      2018 Annual Research Report
    • Overseas

URL: 

Published: 2018-04-23   Modified: 2023-01-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi