• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Challenge to Intractable Semidefinite and Second-order Cone Programs

Research Project

Project/Area Number 18H03206
Research Category

Grant-in-Aid for Scientific Research (B)

Allocation TypeSingle-year Grants
Section一般
Review Section Basic Section 60020:Mathematical informatics-related
Research InstitutionNational Graduate Institute for Policy Studies

Principal Investigator

Takashi Tsuchiya  政策研究大学院大学, 政策研究科, 教授 (00188575)

Co-Investigator(Kenkyū-buntansha) 北原 知就  九州大学, 経済学研究院, 准教授 (10551260)
上野 玄太  統計数理研究所, モデリング研究系, 教授 (40370093)
中田 真秀  国立研究開発法人理化学研究所, 情報システム本部, 技師 (50469912)
ロウレンソ ブルノ・フィゲラ  統計数理研究所, 数理・推論研究系, 准教授 (80778720)
小原 敦美  福井大学, 学術研究院工学系部門, 教授 (90221168)
Project Period (FY) 2018-04-01 – 2021-03-31
Project Status Completed (Fiscal Year 2021)
Budget Amount *help
¥16,510,000 (Direct Cost: ¥12,700,000、Indirect Cost: ¥3,810,000)
Fiscal Year 2020: ¥4,420,000 (Direct Cost: ¥3,400,000、Indirect Cost: ¥1,020,000)
Fiscal Year 2019: ¥5,850,000 (Direct Cost: ¥4,500,000、Indirect Cost: ¥1,350,000)
Fiscal Year 2018: ¥6,240,000 (Direct Cost: ¥4,800,000、Indirect Cost: ¥1,440,000)
Keywords半正定値計画問題 / 2次錐計画問題 / 双対定理 / 双対ギャップ / 内点法 / 線形計画問題 / 悪条件 / 悪条件問題 / 密度推定法 / 大規模問題 / グラフィカルモデル / 非正則問題 / 半正定値計画法 / 強双対性 / 共役勾配法 / 恭順錐 / 2次錐計画問題
Outline of Final Research Achievements

Semidefinite Programming (SDP) and and Second-order Cone Programming (SOCP) are examples of linear programming (LP) over convex cones with many applications. We say a problem is regular if it has interior-feasible solutions on both primal and dual side. Otherwise the problem is called singular. While good algorithms exist for regular problems, it is harder to solve singular problems. We studied singular problems to obtain three major results. First, we showed that any LP over convex cones (LPC) can be solved completely by calling interior-point oracle finitely many times, where interior-point oracle returns an optimal solution for a given regular LPC. Second, we analyzed change of the optimal value when a singular SDP is perturbed to make it regular. Third, as an application of the second result, we demonstrated that if the interior-point algorithm is applied to a SDP with nonzero duality gap, it generates a sequence converging to a
value between primal and dual optimal values.

Academic Significance and Societal Importance of the Research Achievements

本研究により,悪条件半正定値計画問題や凸錐上の線形計画問題の構造解析が大きく進展した.まず,任意の半正定値計画問題や凸錐上の線形計画問題を,理想化された内点法によって完全に解くことができることが証明された.さらに,代数幾何を用い,長年未解決であった,強双対定理が成立しないような悪条件半正定値計画問題の摂動解析を行うことにも成功した.そして,その結果を活用して,半正定値計画問題に対する内点法が従来認識されていた以上に強力な解法で「任意の問題に適用した時に(ある種の)大域的収束性を有する」ことを明らかにした.

Report

(4 results)
  • 2021 Final Research Report ( PDF )
  • 2020 Annual Research Report
  • 2019 Annual Research Report
  • 2018 Annual Research Report
  • Research Products

    (12 results)

All 2021 2019

All Journal Article (2 results) (of which Int'l Joint Research: 2 results,  Peer Reviewed: 2 results,  Open Access: 1 results) Presentation (9 results) (of which Int'l Joint Research: 4 results,  Invited: 4 results) Funded Workshop (1 results)

  • [Journal Article] Solving SDP completely with an interior point oracle2021

    • Author(s)
      Lourenco Bruno F.、Muramatsu Masakazu、Tsuchiya Takashi
    • Journal Title

      Optimization Methods and Software

      Volume: 36 Issue: 2-3 Pages: 425-471

    • DOI

      10.1080/10556788.2020.1850720

    • Related Report
      2019 Annual Research Report
    • Peer Reviewed / Open Access / Int'l Joint Research
  • [Journal Article] Amenable cones: error bounds without constraint qualifications2019

    • Author(s)
      Bruno F. Lourenco
    • Journal Title

      Mathematical Programming

      Volume: 出版予定 Issue: 1-2 Pages: 1-48

    • DOI

      10.1007/s10107-019-01439-3

    • Related Report
      2018 Annual Research Report
    • Peer Reviewed / Int'l Joint Research
  • [Presentation] 線形計画問題と半正定値計画問題への幾何学的接近法2021

    • Author(s)
      土谷隆
    • Organizer
      京都大学数理解析研究所「組合せ最適化セミナー」
    • Related Report
      2020 Annual Research Report
    • Invited
  • [Presentation] 悪条件半正定値計画問題の数理とアルゴリズム2021

    • Author(s)
      土谷隆
    • Organizer
      第35回信号処理シンポジウム
    • Related Report
      2020 Annual Research Report
    • Invited
  • [Presentation] A Limiting Analysis on Regularization of Ill-Conditioned SDP and Its Implication to Duality Theory2021

    • Author(s)
      Takashi Tsuchiya
    • Organizer
      SIAM Conference on Optimization
    • Related Report
      2020 Annual Research Report
  • [Presentation] A Limiting Analysis on Regularization of Singular Semidefinite Programs and Its Implication to Infeasible Interior-point Algorithms2021

    • Author(s)
      Takashi Tsuchiya
    • Organizer
      IFORS 2021
    • Related Report
      2020 Annual Research Report
  • [Presentation] A New Look at Duality Theory of Singular SDPs and its Implication to Convergence of Infeasible Interior Point Algorithms2021

    • Author(s)
      Takashi Tsuchiya
    • Organizer
      Workshop on Continuous Optimization
    • Related Report
      2020 Annual Research Report
    • Int'l Joint Research / Invited
  • [Presentation] An extension of asymptotic duality in SDP and its implication to the convergence theory of infeasible interior-point algorithms2021

    • Author(s)
      Takashi Tsuchiya
    • Organizer
      Second Workshop on Numerical Algebra, Algorithms and Analysis
    • Related Report
      2019 Annual Research Report
    • Invited
  • [Presentation] Duality theory of SDP revisited: most primal-dual weakly feasible SDPs have finite nonzero duality gaps2019

    • Author(s)
      Takashi Tsuchiya, Louenco Bruno and Masakazu Muramatsu
    • Organizer
      The Sixth International Conference on Continuous Optimization
    • Related Report
      2018 Annual Research Report
    • Int'l Joint Research
  • [Presentation] A limiting analysis of regularization of SDP and its implication to infeasible interior-point algorithms2019

    • Author(s)
      Takashi Tsuchiya
    • Organizer
      Discrete Optimization and Machine Learning
    • Related Report
      2018 Annual Research Report
    • Int'l Joint Research
  • [Presentation] A Limiting Analysis on Regularization of SDP and its Implication to Infeasible Interior-point Algorithms2019

    • Author(s)
      Takashi Tsuchiya
    • Organizer
      Workshop “Recent Development in Optimization III”
    • Related Report
      2018 Annual Research Report
    • Int'l Joint Research
  • [Funded Workshop] Workshop “Recent Development in Optimization III”2019

    • Related Report
      2018 Annual Research Report

URL: 

Published: 2018-04-23   Modified: 2023-01-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi