• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Development of eigenvalue analysis methods using a quadrature-type eigensolver with nonlinear transformations

Research Project

Project/Area Number 18H03250
Research Category

Grant-in-Aid for Scientific Research (B)

Allocation TypeSingle-year Grants
Section一般
Review Section Basic Section 60100:Computational science-related
Research InstitutionUniversity of Tsukuba

Principal Investigator

Sakurai Tetsuya  筑波大学, システム情報系, 教授 (60187086)

Co-Investigator(Kenkyū-buntansha) 二村 保徳  筑波大学, システム情報系, 助教 (30736210)
今倉 暁  筑波大学, システム情報系, 准教授 (60610045)
保國 惠一  筑波大学, システム情報系, 助教 (90765934)
Project Period (FY) 2018-04-01 – 2021-03-31
Project Status Completed (Fiscal Year 2021)
Budget Amount *help
¥16,770,000 (Direct Cost: ¥12,900,000、Indirect Cost: ¥3,870,000)
Fiscal Year 2020: ¥5,330,000 (Direct Cost: ¥4,100,000、Indirect Cost: ¥1,230,000)
Fiscal Year 2019: ¥5,200,000 (Direct Cost: ¥4,000,000、Indirect Cost: ¥1,200,000)
Fiscal Year 2018: ¥6,240,000 (Direct Cost: ¥4,800,000、Indirect Cost: ¥1,440,000)
Keywords固有値解析 / 積分型固有値解法 / 非線形変換 / 非線形変数変換
Outline of Final Research Achievements

In this research, we developed a method for improving the performance of the quadrature-type parallel eigenvalue solver through nonlinear variable transformation. Compared to conventional sequential eigenvalue solvers, quadrature-eigenvalue solvers have high parallelism and can solve nonlinear eigenvalue problems with the same algorithm as linear eigenvalue problems. On the other hand, its performance is affected by the distribution of eigenvalues in the neighborhood of the target domain. We proposed a method to transform the linear eigenvalue problems to the corresponding nonlinear eigenvalue problems by using nonlinear variable transformations. The obtained nonlinear eigenvalue problem is solved using the nonlinear version of the quadrature-type eigenvalue solver. The performance of the proposed method is theoretically analyzed, and the effectiveness of the proposed method is confirmed by applying the developed method to several applications.

Academic Significance and Societal Importance of the Research Achievements

本研究課題において、線形固有値問題を非線形固有値問題に帰着させて解くこれまでにない新規の方法論を提案し、その手法の構築と評価を行ったことが学術的な意義である。大規模な固有値解析は、素粒子や原子核などの基礎物理分野、ナノマテリアルやフォトニック結晶の応用物理分野、自動車・建築物の設計、新素材・デバイスの開発、流体・振動解析、創薬、ネットワーク・データ解析など、幅広いシミュレーションでの応用がある。本課題で開発・拡張を進めた超並列な固有値解法が活用されることで、幅広い分野の科学技術シミュレーション・データ解析応用の発展に寄与する。

Report

(4 results)
  • 2021 Final Research Report ( PDF )
  • 2020 Annual Research Report
  • 2019 Annual Research Report
  • 2018 Annual Research Report
  • Research Products

    (40 results)

All 2022 2021 2020 2019 2018 Other

All Int'l Joint Research (2 results) Journal Article (19 results) (of which Int'l Joint Research: 5 results,  Peer Reviewed: 18 results,  Open Access: 8 results) Presentation (19 results) (of which Int'l Joint Research: 13 results,  Invited: 1 results)

  • [Int'l Joint Research] Nanchang University/Shanghai Maritime University(中国)

    • Related Report
      2020 Annual Research Report
  • [Int'l Joint Research] University of Wuppertal(ドイツ)

    • Related Report
      2020 Annual Research Report
  • [Journal Article] Flexible subspace iteration with moments for an effective contour integration‐based eigensolver2022

    • Author(s)
      Huber Sarah、Futamura Yasunori、Galgon Martin、Imakura Akira、Lang Bruno、Sakurai Tetsuya
    • Journal Title

      Numerical Linear Algebra with Applications

      Volume: online first Issue: 6 Pages: 1-14

    • DOI

      10.1002/nla.2447

    • Related Report
      2020 Annual Research Report
    • Peer Reviewed / Int'l Joint Research
  • [Journal Article] Structural analysis based on unsupervised learning: Search for a characteristic low-dimensional space by local structures in atomistic simulations2022

    • Author(s)
      Tamura Ryo、Matsuda Momo、Lin Jianbo、Futamura Yasunori、Sakurai Tetsuya、Miyazaki Tsuyoshi
    • Journal Title

      Physical Review B

      Volume: 105 Issue: 7 Pages: 1-18

    • DOI

      10.1103/physrevb.105.075107

    • Related Report
      2020 Annual Research Report
    • Peer Reviewed
  • [Journal Article] Spectral Graph Partitioning Using Geodesic Distance-based Projection2021

    • Author(s)
      Futamura Yasunori、Wakaki Ryota、Sakurai Tetsuya
    • Journal Title

      2021 IEEE High Performance Extreme Computing Conference (HPEC)

      Volume: proceedings Pages: 1-7

    • DOI

      10.1109/hpec49654.2021.9622831

    • Related Report
      2020 Annual Research Report
    • Peer Reviewed
  • [Journal Article] Efficient Contour Integral-based Eigenvalue Computation Using an Iterative Linear Solver with Shift-Invert Preconditioning2021

    • Author(s)
      Futamura Yasunori、Sakurai Tetsuya
    • Journal Title

      HPC Asia 2021: The International Conference on High Performance Computing in Asia-Pacific Region

      Volume: 該当なし Pages: 90-99

    • DOI

      10.1145/3432261.3432269

    • Related Report
      2020 Annual Research Report
    • Peer Reviewed / Open Access
  • [Journal Article] Efficient Implementation of a Dimensionality Reduction Method Using a Complex Moment-Based Subspace2021

    • Author(s)
      Takahiro Yano, Yasunori Futamura, Akira Imakura, Tetsuya Sakurai
    • Journal Title

      In: Proceedings of HPC Asia 2021: The International Conference on High Performance Computing in Asia-Pacific Region

      Volume: 1 Pages: 83-89

    • DOI

      10.1145/3432261.3432267

    • Related Report
      2020 Annual Research Report
    • Peer Reviewed / Open Access
  • [Journal Article] The tropical scaling for the polynomial eigenvalue problem solved by a contour integral method2021

    • Author(s)
      Chen Hongjia、Zhang Ke、Sakurai Tetsuya
    • Journal Title

      Numerical Linear Algebra with Applications

      Volume: 29 Issue: 2

    • DOI

      10.1002/nla.2413

    • Related Report
      2020 Annual Research Report
    • Int'l Joint Research
  • [Journal Article] Ensemble feature learning to identify risk factors for predicting secondary cancer.2019

    • Author(s)
      X. Ye, H. Li, T. Sakurai and P.W. Shueng.
    • Journal Title

      International Journal of Medical Sciences

      Volume: 16(7) Issue: 7 Pages: 949-949

    • DOI

      10.7150/ijms.33820

    • NAID

      120007133176

    • Related Report
      2019 Annual Research Report
    • Peer Reviewed / Open Access / Int'l Joint Research
  • [Journal Article] Backward error analysis for linearizations in heavily damped quadratic eigenvalue problem.2019

    • Author(s)
      H. Chen, J. Meng, T. Sakurai and X. Wang
    • Journal Title

      Numerical Linear Algebra with Applications

      Volume: 26 Issue: 4

    • DOI

      10.1002/nla.2253

    • Related Report
      2019 Annual Research Report
    • Peer Reviewed / Int'l Joint Research
  • [Journal Article] Simultaneous Band Reduction of Two Symmetric Matrices2019

    • Author(s)
      Lei Du, Akira Imakura, Tetsuya Sakurai
    • Journal Title

      Computers and Mathematics with Applications

      Volume: 77 Issue: 8 Pages: 2207-2220

    • DOI

      10.1016/j.camwa.2018.12.003

    • Related Report
      2019 Annual Research Report
    • Peer Reviewed / Open Access / Int'l Joint Research
  • [Journal Article] Polynomial Preconditioner for Linear Systems with Multiple Right-Hand Sides and Multiple Shifts2019

    • Author(s)
      関川 悠太, 二村 保徳, 今倉 暁, 櫻井 鉄也
    • Journal Title

      Transactions of the Japan Society for Industrial and Applied Mathematics

      Volume: 29 Issue: 1 Pages: 141-164

    • DOI

      10.11540/jsiamt.29.1_141

    • NAID

      130007618976

    • ISSN
      2424-0982
    • Related Report
      2019 Annual Research Report 2018 Annual Research Report
    • Peer Reviewed / Open Access
  • [Journal Article] Scalable Eigen-analysis engine for large-scale eigenvalue problems.2019

    • Author(s)
      T. Sakurai, Y. Futamura, A. Imakura, T. Imamura
    • Journal Title

      Advanced Software Technologies for Post-Peta Scale Computing

      Volume: 24 Issue: 6 Pages: 37-57

    • DOI

      10.3233/ida-194942

    • Related Report
      2019 Annual Research Report
    • Peer Reviewed
  • [Journal Article] Distributed Collaborative Feature Selection Based on Intermediate Representation.2019

    • Author(s)
      X. Ye, H. Li, A. Imakura and T. Sakurai
    • Journal Title

      Proceedings of the 28th International Joint Conference on Artificial Intelligence (IJCAI-19),Macao

      Volume: 28 Pages: 4142-4149

    • DOI

      10.24963/ijcai.2019/575

    • Related Report
      2019 Annual Research Report
    • Peer Reviewed / Open Access
  • [Journal Article] Complex Moment-Based Supervised Eigenmap for Dimensionality Reduction2019

    • Author(s)
      Akira Imakura, Momo Matsuda, Xiucai Ye, Tetsuya Sakurai
    • Journal Title

      Proceedings of the AAAI Conference on Artificial Intelligence

      Volume: 33 Issue: 01 Pages: 3910-3918

    • DOI

      10.1609/aaai.v33i01.33013910

    • Related Report
      2019 Annual Research Report
    • Peer Reviewed / Open Access
  • [Journal Article] Scalable Eigen-analysis engine for large-scale eigenvalue problems2019

    • Author(s)
      T. Sakurai, Y. Futamura, A. Imakura, T. Imamura
    • Journal Title

      Advanced Software Technologies for Post-Peta Scale Computing

      Volume: 1巻 Pages: 37-57

    • DOI

      10.1007/978-981-13-1924-2_3

    • ISBN
      9789811319235, 9789811319242
    • Related Report
      2018 Annual Research Report
    • Peer Reviewed
  • [Journal Article] Spectral feature scaling method for supervised dimensionality reduction2018

    • Author(s)
      Matsuda, Momo, Morikuni, Keiichi, Sakurai, Tetsuya
    • Journal Title

      Twenty-Seventh International Joint Conference on Artificial Intelligence

      Volume: 1巻 Pages: 2560-2566

    • Related Report
      2018 Annual Research Report
    • Peer Reviewed
  • [Journal Article] 高次元データのスペクトラルクラス分類における特徴量スケーリング2018

    • Author(s)
      松田萌望、保國惠一、今倉暁、櫻井鉄也
    • Journal Title

      信学技報, IBISML2018-2

      Volume: 118巻 no81 Pages: 9-14

    • Related Report
      2018 Annual Research Report
    • Peer Reviewed
  • [Journal Article] Block SS--CAA: A complex moment-based parallel nonlinear eigensolver using the block communication-avoiding Arnoldi procedure2018

    • Author(s)
      Akira Imakura, Tetsuya Sakurai
    • Journal Title

      Parallel Computing

      Volume: 74 Pages: 34-48

    • DOI

      10.1016/j.parco.2017.11.007

    • Related Report
      2018 Annual Research Report
    • Peer Reviewed
  • [Journal Article] An improvement of the nonlinear semi-NMF based method by considering bias vectors and regularization for deep neural networks2018

    • Author(s)
      R. Arai, A. Imakura, T. Sakurai
    • Journal Title

      International J. Machine Learning and Comput

      Volume: 8巻 Issue: 3 Pages: 191-197

    • DOI

      10.18178/ijmlc.2018.8.3.686

    • Related Report
      2018 Annual Research Report
    • Peer Reviewed
  • [Journal Article] Performance evaluation of the Sakurai-Sugiura method with a block Krylov subspace linear solver for large dense Hermitian-definite generalized eigenvalue problems2018

    • Author(s)
      Takahiro Yano, Yasunori Futamura, Akira Imakura, Tetsuya Sakurai
    • Journal Title

      JSIAM Letters

      Volume: 10 Issue: 0 Pages: 77-80

    • DOI

      10.14495/jsiaml.10.77

    • NAID

      130007550465

    • ISSN
      1883-0609, 1883-0617
    • Related Report
      2018 Annual Research Report
    • Peer Reviewed / Open Access
  • [Presentation] On the Residual Gap of Block Lanczos-Type Methods and Its Remedy by Cross-Interactive Residual Smoothing2021

    • Author(s)
      Kensuke Aihara, Akira Imakura, Keiichi Morikuni
    • Organizer
      SIAM Conference on Applied Linear Algebra (SIAM-LA21)
    • Related Report
      2020 Annual Research Report
    • Int'l Joint Research
  • [Presentation] Empirical Study of Non-Model Shared Data Collaboration Analysis Using Pseudo-data.2020

    • Author(s)
      Nakai, Akie; Takahashi, Yuta; Imakura, Akira; Okada, Sakurai, Tetsuya
    • Organizer
      サービス学会 第8回国内大会
    • Related Report
      2019 Annual Research Report
  • [Presentation] 組織内に分散された共有不能データのデータコラボレーション解析による活用実験.2020

    • Author(s)
      稲葉, 弘明; 今倉, 暁; 栗山大輔; 鎮目, 進一; 岡田幸彦; 櫻井鉄也
    • Organizer
      サービス学会 第8回国内大会
    • Related Report
      2019 Annual Research Report
  • [Presentation] Development of an Eigen-Analysis Engine for Large-Scale Simulation and Big Data Analysis.2020

    • Author(s)
      Sakurai, Tetsuya
    • Organizer
      SIAM Conference on Parallel Processing for Scientific Computing (PP20)
    • Related Report
      2019 Annual Research Report
    • Int'l Joint Research
  • [Presentation] A complex moment-based dimensionality reduction for data analysis.2019

    • Author(s)
      Imakura, Akira; Matsuda, Momo; Ye, Xiucai; Sakurai, Tetsuya
    • Organizer
      2019 Mini-Workshop on Computational Science (MWCS2019)
    • Related Report
      2019 Annual Research Report
    • Int'l Joint Research
  • [Presentation] Distributed Collaborative Feature Selection Based on Intermediate Representation.2019

    • Author(s)
      Ye, Xiucai; Li, Hongmin; Akira, Imakura; Sakurai, Tetsuya
    • Organizer
      28th International Joint Conference on Artificial Intelligence (IJCAI-19)
    • Related Report
      2019 Annual Research Report
    • Int'l Joint Research
  • [Presentation] Nonlinear semi-NMF based method for deep neural network computations and its improvements.2019

    • Author(s)
      Imakura, Akira; Sakurai, Tetsuya
    • Organizer
      International Congress on Industrial and Applied Mathematics (ICIAM2019)
    • Related Report
      2019 Annual Research Report
    • Int'l Joint Research
  • [Presentation] A novel dimensionality reduction method using a complex momnet-based subspace.2019

    • Author(s)
      Imakura, Akira; Sakurai, Tetsuya
    • Organizer
      International Congress on Industrial and Applied Mathematics (ICIAM2019)
    • Related Report
      2019 Annual Research Report
    • Int'l Joint Research
  • [Presentation] A complex moment-based spectral method for detecting anomalous structures in large graphs.2019

    • Author(s)
      Sakurai, Tetsuya; Funamura, Yasunori; Ye, Xiucai; Imakura, Akira
    • Organizer
      International Congress on Industrial and Applied Mathematics (ICIAM2019)
    • Related Report
      2019 Annual Research Report
    • Int'l Joint Research
  • [Presentation] Data Collaboration for Distributed Data Analytic Infrastructure.2019

    • Author(s)
      Sakurai, Tetsuya
    • Organizer
      The 6th Japan-U.S. Digital Innovation Hub Workshop: Alliance for the Future of Digital Science
    • Related Report
      2019 Annual Research Report
    • Int'l Joint Research
  • [Presentation] 最小二乗確率的分類器を用いた多峰性のあるデータに対する特異点検出.2019

    • Author(s)
      与田裕之; 今倉暁; 松田萌望; 叶, 秀彩; 櫻井鉄也
    • Organizer
      第48回数値解析シンポジウム(NAS2019)
    • Related Report
      2019 Annual Research Report
  • [Presentation] Data Collaboration for Robust Anomaly Detection in Cybersecurity.2019

    • Author(s)
      Sakurai, Tetsuya
    • Organizer
      International Symposium on "Digital Science Now"
    • Related Report
      2019 Annual Research Report
    • Int'l Joint Research
  • [Presentation] Ensemble Feature Learning to Identify Risk Factors for Predicting Secondary Cancer.2019

    • Author(s)
      Ye, Xiucai; Li, Hongmin; Sakurai, Tetsuya; Pei-Wei Shueng
    • Organizer
      International Conference on Medical and Health Informatics (ICMHI2019)
    • Related Report
      2019 Annual Research Report
    • Int'l Joint Research
  • [Presentation] Spectral Clustering with Adaptive Similarity Measure in Kernel Space.2019

    • Author(s)
      Ye, Xiucai; Sakurai, Tetsuya
    • Organizer
      International Conference on Soft Computing and Machine Learning (SCML2019)
    • Related Report
      2019 Annual Research Report
    • Int'l Joint Research / Invited
  • [Presentation] Intel Xeon Phiを用いたSpectral nested dissectionの性能評価2018

    • Author(s)
      稲川裕太, 二村保徳, 今倉暁, 櫻井鉄也
    • Organizer
      SWoPP2018
    • Related Report
      2018 Annual Research Report
  • [Presentation] Efficient Parallel Implementation of Spectral Nested Dissection for Large-Scale Sparse Linear System2018

    • Author(s)
      Yuta Inagawa, Yasunori Futamura, Akira Imakura, Tetsuya Sakurai
    • Organizer
      PMAA18
    • Related Report
      2018 Annual Research Report
    • Int'l Joint Research
  • [Presentation] Improving numerical stability and analyzing backward error for heavily damped quadratic eigenvalue problem2018

    • Author(s)
      諶 鴻佳
    • Organizer
      EASIAM2018
    • Related Report
      2018 Annual Research Report
    • Int'l Joint Research
  • [Presentation] 反復線形ソルバを用いた大規模密一般化固有値問題向けSS-RR法の性能評価2018

    • Author(s)
      矢野貴大、二村保徳、今倉暁、櫻井鉄也
    • Organizer
      日本応用数理学会2018年度年会
    • Related Report
      2018 Annual Research Report
  • [Presentation] スペクトラル特徴量スケーリングの多クラス分類問題への拡張2018

    • Author(s)
      松田萌望, 保國惠一, 今倉暁, 櫻井鉄也
    • Organizer
      日本応用数理学会2018年度年会
    • Related Report
      2018 Annual Research Report

URL: 

Published: 2018-04-23   Modified: 2023-01-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi