• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Machine learning for extracting latent dynamics from data

Research Project

Project/Area Number 18H03287
Research Category

Grant-in-Aid for Scientific Research (B)

Allocation TypeSingle-year Grants
Section一般
Review Section Basic Section 61030:Intelligent informatics-related
Research InstitutionKyushu University (2019-2021)
Osaka University (2018)

Principal Investigator

Kawahara Yoshinobu  九州大学, マス・フォア・インダストリ研究所, 教授 (00514796)

Co-Investigator(Kenkyū-buntansha) 中尾 裕也  東京工業大学, 工学院, 教授 (40344048)
Project Period (FY) 2018-04-01 – 2022-03-31
Project Status Completed (Fiscal Year 2021)
Budget Amount *help
¥16,770,000 (Direct Cost: ¥12,900,000、Indirect Cost: ¥3,870,000)
Fiscal Year 2021: ¥3,380,000 (Direct Cost: ¥2,600,000、Indirect Cost: ¥780,000)
Fiscal Year 2020: ¥4,420,000 (Direct Cost: ¥3,400,000、Indirect Cost: ¥1,020,000)
Fiscal Year 2019: ¥4,030,000 (Direct Cost: ¥3,100,000、Indirect Cost: ¥930,000)
Fiscal Year 2018: ¥4,940,000 (Direct Cost: ¥3,800,000、Indirect Cost: ¥1,140,000)
Keywords非線形ダイナミクス / 作用素論的解析 / 機械学習 / 統計的機械学習 / データ科学 / 非線形動力学 / 位相縮約 / データ駆動科学
Outline of Final Research Achievements

With the development of measurement technology and information infrastructure, the extraction of scientific knowledge by data-driven approaches using observation / measurement data has been recognized as an important issue in various fields. In this study, we worked on the development of machine learning algorithms for extracting from data dynamic characteristics (dynamics) that complicated phenomena follow. In particular, we have developed methods for extracting information on complex systems and evaluating their validities by expanding the operator-theoretic analysis, including Koopman analysis, which is attracting attention in the field of physics recently, based on the framework of machine learning. We also developed machine learning algorithms to use extracted information for prediction. Finally, we conducted applied research in collaboration with researchers in multiple scientific fields to verify its usefulness.

Academic Significance and Societal Importance of the Research Achievements

データ駆動による科学的知識の抽出は,近年様々な領域においてますます重要となっている.本研究では,データ駆動により複雑現象に関する動的特性の情報抽出を行い,そしてそれを更に予測へ用いるための新たな機械学習に基づく理論・アルゴリズムの構築を進めた.また,脳波解析や集団運動をはじめとしたいくつかの科学領域におけるデータ解析に対して適用し,その有用性を確認した.このような課題は広く科学領域において重要となるものであり,本研究で得られた成果は,本研究でも取り組んだ分野に限らず今後広く他分野へと波及する技術的要素となることが期待できる.

Report

(5 results)
  • 2021 Annual Research Report   Final Research Report ( PDF )
  • 2020 Annual Research Report
  • 2019 Annual Research Report
  • 2018 Annual Research Report
  • Research Products

    (44 results)

All 2022 2021 2020 2019 2018

All Journal Article (16 results) (of which Peer Reviewed: 16 results,  Open Access: 12 results) Presentation (27 results) (of which Int'l Joint Research: 9 results,  Invited: 12 results) Patent(Industrial Property Rights) (1 results) (of which Overseas: 1 results)

  • [Journal Article] Dynamic mode decomposition via convolutional encoders for dynamics modeling in videos2022

    • Author(s)
      I. Ul Haq, T. Iwata, and Y. Kawahara
    • Journal Title

      Computer Vision and Image Understanding

      Volume: 216 Pages: 103355-103355

    • DOI

      10.1016/j.cviu.2021.103355

    • Related Report
      2021 Annual Research Report
    • Peer Reviewed / Open Access
  • [Journal Article] Predicting behavior through dynamic modes in resting-state fMRI data2022

    • Author(s)
      S. Ikeda, K. Kawano, S. Watanabe, O. Yamashita, and Y. Kawahara
    • Journal Title

      NeuroImage

      Volume: 247 Pages: 118801-118801

    • DOI

      10.1016/j.neuroimage.2021.118801

    • Related Report
      2021 Annual Research Report
    • Peer Reviewed / Open Access
  • [Journal Article] Discriminant Dynamic Mode Decomposition for Labeled Spatio-Temporal Data Collections2022

    • Author(s)
      N. Takeishi, K. Takeuchi, K. Fujii, and Y. Kawahara
    • Journal Title

      SIAM Journal on Applied Dynamical Systems

      Volume: -

    • Related Report
      2021 Annual Research Report
    • Peer Reviewed
  • [Journal Article] Koopman spectral analysis of elementary cellular automata2021

    • Author(s)
      Keisuke Taga, Yuzuru Kato, Yoshinobu Kawahara, Yoshihiro Yamazaki, and Hiroya Nakao
    • Journal Title

      Chaos: An Interdisciplinary Journal of Nonlinear Science

      Volume: 31 Issue: 10 Pages: 103121-103121

    • DOI

      10.1063/5.0059202

    • Related Report
      2021 Annual Research Report
    • Peer Reviewed
  • [Journal Article] Physically-interpretable classification of biological network dynamics for complex collective motions2020

    • Author(s)
      Fujii Keisuke、Takeishi Naoya、Hojo Motokazu、Inaba Yuki、Kawahara Yoshinobu
    • Journal Title

      Scientific Reports

      Volume: 10 Issue: 1 Pages: 3005-3005

    • DOI

      10.1038/s41598-020-58064-w

    • Related Report
      2020 Annual Research Report
    • Peer Reviewed / Open Access
  • [Journal Article] Neural decoding of ECoG signals using dynamic mode decomposition2020

    • Author(s)
      Y. Shiraishi, Y. Kawahara, O. Yamashita, R. Fukuma, S. Yamamoto, Y. Saitoh, H. Kishima & T. Yanagisawa
    • Journal Title

      Journal of Neural Engineering

      Volume: 17 Issue: 3 Pages: 036009-036009

    • DOI

      10.1088/1741-2552/ab8910

    • Related Report
      2020 Annual Research Report
    • Peer Reviewed / Open Access
  • [Journal Article] Dynamic mode decomposition via dictionary learning for foreground modeling in videos2020

    • Author(s)
      I. Ul Haq, K. Fujii, & Y. Kawahara
    • Journal Title

      Computer Vision and Image Understanding

      Volume: 199 Pages: 103022-103022

    • DOI

      10.1016/j.cviu.2020.103022

    • Related Report
      2020 Annual Research Report
    • Peer Reviewed / Open Access
  • [Journal Article] Learning Multiple Nonlinear Dynamical Systems with Side Information2020

    • Author(s)
      N. Takeishi, & Y. Kawahara
    • Journal Title

      Proc. of the 59th IEEE Conf. on Decision and Control (CDC'20)

      Volume: -- Pages: 3206-3211

    • DOI

      10.1109/cdc42340.2020.9304482

    • Related Report
      2020 Annual Research Report
    • Peer Reviewed
  • [Journal Article] Krylov Subspace Method for Nonlinear Dynamical Systems with Random Noise2020

    • Author(s)
      Y. Hashimoto, I. Ishikawa, M. Ikeda, Y. Matsuo, & Y. Kawahara
    • Journal Title

      Journal of Machine Learning Research

      Volume: 21 Pages: 1-29

    • Related Report
      2020 Annual Research Report
    • Peer Reviewed / Open Access
  • [Journal Article] Dynamic mode decomposition in vector-valued reproducing kernel Hilbert spaces for extracting dynamical structure among observables2019

    • Author(s)
      Fujii Keisuke、Kawahara Yoshinobu
    • Journal Title

      Neural Networks

      Volume: 117 Pages: 94-103

    • DOI

      10.1016/j.neunet.2019.04.020

    • NAID

      120006765145

    • Related Report
      2019 Annual Research Report
    • Peer Reviewed / Open Access
  • [Journal Article] Data-driven spectral analysis for coordinative structures in periodic human locomotion2019

    • Author(s)
      Fujii Keisuke、Takeishi Naoya、Kibushi Benio、Kouzaki Motoki、Kawahara Yoshinobu
    • Journal Title

      Scientific Reports

      Volume: 9 Issue: 1 Pages: 16755-16755

    • DOI

      10.1038/s41598-019-53187-1

    • Related Report
      2019 Annual Research Report
    • Peer Reviewed / Open Access
  • [Journal Article] Learning with coherence patters in multivariate time-series data via dynamic mode decomposition2019

    • Author(s)
      T. Bito,M. Hiraoka,and Y. Kawahara
    • Journal Title

      Proc. of the 2019 Int'l Joint Conf. on Neural Networks (IJCNN'19)

      Volume: - Pages: 19278-19278

    • DOI

      10.1109/ijcnn.2019.8852177

    • Related Report
      2019 Annual Research Report
    • Peer Reviewed
  • [Journal Article] Supervised dynamic mode decomposition via multitask learning2019

    • Author(s)
      Fujii Keisuke、Kawahara Yoshinobu
    • Journal Title

      Pattern Recognition Letters

      Volume: 122 Pages: 7-13

    • DOI

      10.1016/j.patrec.2019.02.010

    • Related Report
      2019 Annual Research Report
    • Peer Reviewed / Open Access
  • [Journal Article] Factorially Switching Dynamic Mode Decomposition for Koopman Analysis of Time-Variant Systems2018

    • Author(s)
      N. Takeishi, T. Yairi and Y. Kawahara
    • Journal Title

      Proceedings of 2018 IEEE Conference on Decision and Control (CDC'18)

      Volume: -- Pages: 6402-6408

    • DOI

      10.1109/cdc.2018.8619846

    • Related Report
      2018 Annual Research Report
    • Peer Reviewed / Open Access
  • [Journal Article] Metric on Nonlinear Dynamical Systems with Perron-Frobenius Operators2018

    • Author(s)
      I. Ishikawa, K. Fujii, M. Ikeda, Y. Hashimoto and Y. Kawahara
    • Journal Title

      Advances in Neural Information Processing Systems 31 (Proc. of NeurIPS'18)

      Volume: -- Pages: 2856-2866

    • Related Report
      2018 Annual Research Report
    • Peer Reviewed / Open Access
  • [Journal Article] Prediction and classification in equation-free collective motion dynamics2018

    • Author(s)
      Fujii Keisuke、Kawasaki Takeshi、Inaba Yuki、Kawahara Yoshinobu
    • Journal Title

      PLOS Computational Biology

      Volume: 14 Issue: 11 Pages: e1006545-e1006545

    • DOI

      10.1371/journal.pcbi.1006545

    • Related Report
      2018 Annual Research Report
    • Peer Reviewed / Open Access
  • [Presentation] Data-Driven Analysis of Dynamical Systems: From the Operator-Theoretic Perspective2022

    • Author(s)
      Y. Kawahara
    • Organizer
      Perspectives on Artificial Intelligence and Machine Learning in Materials Science
    • Related Report
      2021 Annual Research Report
    • Int'l Joint Research / Invited
  • [Presentation] 非線形動力学の作用素論的解析とニューラルネット2021

    • Author(s)
      河原吉伸
    • Organizer
      非線形動力学に基づく次世代AIと基盤技術に関するシンポジウム
    • Related Report
      2021 Annual Research Report
    • Invited
  • [Presentation] 複雑ダイナミクスの理解へのデータ駆動によるアプローチと機械学習2021

    • Author(s)
      河原吉伸
    • Organizer
      2021年度 人工知能学会全国大会 (第35回), 企画セッション KS-04「人工知能と数学-数学の強み-」
    • Related Report
      2021 Annual Research Report
    • Invited
  • [Presentation] 非線形ダイナミクスの作用素論的データ解析とその応用2021

    • Author(s)
      河原吉伸
    • Organizer
      日本オペレーションズ・リサーチ学会「超スマート社会のシステムデザインのための理論と応用」研究部会 第9回研究会
    • Related Report
      2021 Annual Research Report 2020 Annual Research Report
    • Invited
  • [Presentation] 残差の独立性に基づく動的モード間の因果構造の探索2021

    • Author(s)
      児島歩武, 河原吉伸
    • Organizer
      第24回 情報論的学習理論ワークショップ (IBIS 2021), 18
    • Related Report
      2021 Annual Research Report
  • [Presentation] Human behavior can be predicted from resting-state brain dynamic modes2021

    • Author(s)
      S. Ikeda, K. Kawano, S. Watanabe, O. Yamashita, and Y. Kawahara
    • Organizer
      第44回日本神経科学大会/第1回 CJK 国際会議
    • Related Report
      2021 Annual Research Report
  • [Presentation] Resting-state brain dynamic modes predict behavioral traits2021

    • Author(s)
      S. Ikeda, K. Kawano , S. Watanabe , O. Yamashita , and Y. Kawahara
    • Organizer
      2021 Annual Meeting of Organization for Human Brain Mapping (OHBM-21)
    • Related Report
      2021 Annual Research Report
    • Int'l Joint Research
  • [Presentation] 安定不変集合をもつ力学系の学習2020

    • Author(s)
      武石直也, 河原吉伸
    • Organizer
      第23回 情報論的学習理論ワークショップ (IBIS 2020)
    • Related Report
      2020 Annual Research Report
  • [Presentation] 複数人のモデリングのための部分観測と力学的制約を伴う分散型政策学習2020

    • Author(s)
      藤井慶輔, 武石直也, 河原吉伸, 武田一哉
    • Organizer
      第23回 情報論的学習理論ワークショップ (IBIS 2020)
    • Related Report
      2020 Annual Research Report
  • [Presentation] Reproducing kernel Hilbert C*-moduleによる多変量データの解析2020

    • Author(s)
      橋本悠香, 石川勲, 池田正弘, 紅村冬大, 勝良健史, 河原吉伸
    • Organizer
      第23回 情報論的学習理論ワークショップ (IBIS 2020)
    • Related Report
      2020 Annual Research Report
  • [Presentation] Operator-theoretic data analysis for dynamic processes2020

    • Author(s)
      Y. Kawahara
    • Organizer
      I2CNER-IMI International Workshop
    • Related Report
      2019 Annual Research Report
  • [Presentation] 動的モード分解の最近の発展と応用の広がり2019

    • Author(s)
      河原吉伸
    • Organizer
      第36回 プラズマ・核融合学会 年会
    • Related Report
      2019 Annual Research Report
    • Invited
  • [Presentation] 非線形力学系の作用素論的データ解析:クープマン解析、動的モード分解の基礎から最近の話題まで2019

    • Author(s)
      河原吉伸
    • Organizer
      RIMS共同研究 (公開型) 諸科学分野を結ぶ基礎学問としての数値解析学の研究集会
    • Related Report
      2019 Annual Research Report
    • Invited
  • [Presentation] Data-driven Analysis of Dynamical Systems: An Operator-theoretic Approach2019

    • Author(s)
      Y. Kawahara
    • Organizer
      2019 International Joint Conference on AI and Data Science: Mathematics and Applications
    • Related Report
      2019 Annual Research Report
    • Int'l Joint Research / Invited
  • [Presentation] 非線形ダイナミクスの作用素論的データ解析とその応用2019

    • Author(s)
      河原吉伸
    • Organizer
      SICE九州フォーラム「モデリングと制御における学習と最適化理論と実践」
    • Related Report
      2019 Annual Research Report
    • Invited
  • [Presentation] Operator Theoretic Analysis of Dynamical Systems and Dynamic Mode Decomposition2019

    • Author(s)
      Y. Kawahara
    • Organizer
      JSPS A3 Workshop on Soft Matter 2019
    • Related Report
      2019 Annual Research Report
    • Int'l Joint Research / Invited
  • [Presentation] データ駆動によるダイナミクス解析と機械学習2019

    • Author(s)
      河原吉伸
    • Organizer
      第24回情報・統計科学シンポジウム
    • Related Report
      2019 Annual Research Report
  • [Presentation] Interpretable classification of complex collective motions using graph dynamic mode decomposition2019

    • Author(s)
      K. Fujii, N. Takeishi & Y. Kawahara
    • Organizer
      11th Asian Conference on Machine Learning (ACML2019) Workshop on Machine Learning for Trajectory, Activity, and Behavior (ACML-TAB)
    • Related Report
      2019 Annual Research Report
    • Int'l Joint Research
  • [Presentation] ノイズ付き非線形力学系のためのKrylov部分空間法2019

    • Author(s)
      橋本悠香, 石川勲, 池田正弘, 松尾洋一, 河原吉伸
    • Organizer
      第22回情報論的学習理論ワークショップ(IBIS 2019)
    • Related Report
      2019 Annual Research Report
  • [Presentation] 観測量間の動的構造を抽出するグラフ動的モード分解と集団スポーツデータへの応用2019

    • Author(s)
      藤井慶輔, 武石直也, 河原吉伸
    • Organizer
      第22回情報論的学習理論ワークショップ(IBIS 2019)
    • Related Report
      2019 Annual Research Report
  • [Presentation] Data-driven Analysis of Nonlinear Dynamical Systems Based on Operator-theoretic Methods2019

    • Author(s)
      Y. Kawahara
    • Organizer
      Mini Symposia: Towards integration of neuroscience and machine intelligence, NEURO 2019, 1S06a-6
    • Related Report
      2019 Annual Research Report
  • [Presentation] Data-driven spectral analysis for social biomechanics2019

    • Author(s)
      藤井 慶輔, 武石直也, 稲葉優希, 木伏紅緒, 神崎素樹, 河原吉伸
    • Organizer
      第1回彗ひろば(バイオメカニクス研究会)
    • Related Report
      2019 Annual Research Report
  • [Presentation] Data-Driven Analysis of Koopman Spectra with Reproducing Kernels2019

    • Author(s)
      Y. Kawahara
    • Organizer
      Advanced Data-Driven Techniques and Numerical Methods in Koopman Operator Theory, SIAM Conf. On Applications of Dynamical Systems (DS'19)
    • Related Report
      2019 Annual Research Report
    • Int'l Joint Research
  • [Presentation] Kernel Koopman spectral analysis for nonlinear dynamical systems2019

    • Author(s)
      Y. Kawahara
    • Organizer
      Structure-exploiting techniques for approximation, inference and control of complex systems (MS361), 2019 SIAM Conf. on Computational Science and Engineering (CSE'19)
    • Related Report
      2019 Annual Research Report
    • Int'l Joint Research
  • [Presentation] Kernel Koopman spectral analysis for nonlinear dynamical systems2019

    • Author(s)
      Y. Kawahara
    • Organizer
      Structure-exploiting techniques for approximation, inference and control of complex systems (MS361), 2019 SIAM Conf. on Computational Science and Engineering (CSE19)
    • Related Report
      2018 Annual Research Report
    • Int'l Joint Research / Invited
  • [Presentation] Koopman spectral analysis with reproducing kernels for nonlinear dynamical systems2018

    • Author(s)
      Y. Kawahara
    • Organizer
      MC03: Data-Driven Methods for Dynamical Systems, 2018 INFORMS Int'l Conf.
    • Related Report
      2018 Annual Research Report
    • Int'l Joint Research / Invited
  • [Presentation] 動的モード分解による時空間データ解析2018

    • Author(s)
      河原吉伸
    • Organizer
      日本地球惑星科学連合2018年大会
    • Related Report
      2018 Annual Research Report
    • Invited
  • [Patent(Industrial Property Rights)] 評価装置、評価方法、プログラム、ならびに、情報記録媒体2018

    • Inventor(s)
      藤井慶輔,河原吉伸
    • Industrial Property Rights Holder
      藤井慶輔,河原吉伸
    • Industrial Property Rights Type
      特許
    • Filing Date
      2018
    • Related Report
      2018 Annual Research Report
    • Overseas

URL: 

Published: 2018-04-23   Modified: 2023-01-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi