• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Anomalous/Exceptional Pattern Mining with Weak Label Information from Stream Data

Research Project

Project/Area Number 18H03290
Research Category

Grant-in-Aid for Scientific Research (B)

Allocation TypeSingle-year Grants
Section一般
Review Section Basic Section 61030:Intelligent informatics-related
Research InstitutionKyushu University

Principal Investigator

Suzuki Einoshin  九州大学, システム情報科学研究院, 教授 (10251638)

Co-Investigator(Kenkyū-buntansha) 安藤 晋  東京理科大学, 経営学部ビジネスエコノミクス学科, 准教授 (70401685)
Project Period (FY) 2018-04-01 – 2021-03-31
Project Status Completed (Fiscal Year 2020)
Budget Amount *help
¥17,420,000 (Direct Cost: ¥13,400,000、Indirect Cost: ¥4,020,000)
Fiscal Year 2020: ¥5,200,000 (Direct Cost: ¥4,000,000、Indirect Cost: ¥1,200,000)
Fiscal Year 2019: ¥4,940,000 (Direct Cost: ¥3,800,000、Indirect Cost: ¥1,140,000)
Fiscal Year 2018: ¥7,280,000 (Direct Cost: ¥5,600,000、Indirect Cost: ¥1,680,000)
Keywords異常・例外発見 / ストリームデータマイニング / 弱ラベル学習 / イメージキャプショニング / ファスト&スロー思考 / 単語埋め込み / パターンマイニング
Outline of Final Research Achievements

We made achievements in various problems to discover anomalies and exceptionalities by assigning weak label information from dynamic data. Especially, we have proposed two methods which rapidly and accurately detect anomalous image regions and their combinations by assigning captions as weak labels with a deep neural network for rapidly observed image sequence data and confirmed their effectiveness by various means including experiments using an autonomous mobile robot. These methods model normal data with fast clustering in the training phase and then detect anomalous data which differ from normal data in the test phase. The first method won the Best Poster Prize in an international conference. The second method mimics fast & slow thinking done by human beings and detects more complex exceptionalities rapidly.

Academic Significance and Societal Importance of the Research Achievements

訓練フェーズで正常データをモデリングし,テストフェーズで正常データとは異なる異常データを検知する1クラス異常検知問題は,その実用的価値の高さと学術的困難さから,データマイニングと機械学習における重要問題である.本研究成果はこの問題に対し,深層学習に基づいて自動特定した重要な画像領域群に自動付与された説明文を疑似教師信号の一種である弱ラベルとして有効活用する方式を初めて提案した手法であり,たとえば外見が大きく異なる2人が共に女性であるという手がかりを活かせる.この種の説明文はしばしば不正確であり,高速に観測される動的データには実時間処理が必須だが,いずれの問題も高いレベルで解決している.

Report

(4 results)
  • 2020 Annual Research Report   Final Research Report ( PDF )
  • 2019 Annual Research Report
  • 2018 Annual Research Report
  • Research Products

    (24 results)

All 2021 2020 2019 2018 Other

All Journal Article (13 results) (of which Peer Reviewed: 12 results,  Open Access: 13 results) Presentation (9 results) (of which Int'l Joint Research: 8 results) Remarks (2 results)

  • [Journal Article] Joint Optimization of Neural Collaborative Filtering and Variational Auto-Encoder for Hybrid Recommendation2021

    • Author(s)
      園田亮介,鈴木英之進
    • Journal Title

      電子情報通信学会論文誌D 情報・システム

      Volume: J104-D Issue: 2 Pages: 119-129

    • DOI

      10.14923/transinfj.2020JDP7017

    • ISSN
      1880-4535, 1881-0225
    • Year and Date
      2021-02-01
    • Related Report
      2020 Annual Research Report
    • Peer Reviewed / Open Access
  • [Journal Article] Topic Modeling for Sequential Documents Based on Hybrid Inter-Document Topic Dependency2021

    • Author(s)
      Wenbo Li, Tetsu Matsukawa, Hiroto Saigo, Einoshin Suzuki
    • Journal Title

      Journal of Intelligent Information Systems

      Volume: 1 Issue: 3 Pages: 435-458

    • DOI

      10.1007/s10844-020-00635-4

    • Related Report
      2020 Annual Research Report
    • Peer Reviewed / Open Access
  • [Journal Article] Adaptive and Hybrid Context-Aware Fine-Grained Word Sense Disambiguation in Topic Modeling based Document Representation2021

    • Author(s)
      Wenbo Li, Einoshin Suzuki
    • Journal Title

      Information Processing & Management

      Volume: 58 Issue: 4 Pages: 102592-102592

    • DOI

      10.1016/j.ipm.2021.102592

    • Related Report
      2020 Annual Research Report
    • Peer Reviewed / Open Access
  • [Journal Article] Detecting Anomalies from Human Activities by an Autonomous Mobile Robot Based on "Fast and Slow" Thinking2021

    • Author(s)
      Muhammad Fikko Fadjrimiratno, Yusuke Hatae, Tetsu Matsukawa, Einoshin Suzuki
    • Journal Title

      Proc. Sixteenth International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications (VISIGRAPP 2021), Vol. 5: VISAPP

      Volume: 5 Pages: 943-953

    • Related Report
      2020 Annual Research Report
    • Peer Reviewed / Open Access
  • [Journal Article] Hybrid Context-Aware Word Sense Disambiguation in Topic Modeling based Document Representation2020

    • Author(s)
      Wenbo Li, Einoshin Suzuki
    • Journal Title

      Proc. 2020 IEEE International Conference on Data Mining (ICDM 2020)

      Volume: 1 Pages: 332-341

    • DOI

      10.1109/icdm50108.2020.00042

    • Related Report
      2020 Annual Research Report
    • Peer Reviewed / Open Access
  • [Journal Article] Detecting Outliers with One-Class Selective Transfer Machine2020

    • Author(s)
      Hirofumi Fujita, Tetsu Matsukawa, Einoshin Suzuki
    • Journal Title

      Knowledge and Information Systems

      Volume: 62 Issue: 5 Pages: 1781-1818

    • DOI

      10.1007/s10115-019-01407-5

    • Related Report
      2019 Annual Research Report
    • Peer Reviewed / Open Access
  • [Journal Article] Detecting Anomalous Regions from an Image Based on Deep Captioning2020

    • Author(s)
      Yusuke Hatae, Qingpu Yang, Muhammad Fikko Fadjrimiratno, Yuanyuan Li, Tetsu Matsukawa, Einoshin Suzuki
    • Journal Title

      Proc. VISIGRAPP 2020, Vol. 5: VISAPP

      Volume: 5 Pages: 326-335

    • DOI

      10.5220/0008949603260335

    • Related Report
      2019 Annual Research Report
    • Peer Reviewed / Open Access
  • [Journal Article] Context-Aware Latent Dirichlet Allocation for Topic Segmentation2020

    • Author(s)
      Wenbo Li, Tetsu Matsukawa, Hiroto Saigo, Einoshin Suzuki
    • Journal Title

      Proc. 24th Pacific-Asia Conference on Knowledge Discovery and Data Mining (PAKDD 2020)

      Volume: in press

    • Related Report
      2019 Annual Research Report
    • Peer Reviewed / Open Access
  • [Journal Article] Experimental Evaluation of GAN-Based One-Class Anomaly Detection on Office Monitoring2020

    • Author(s)
      Ning Dong, Yusuke Hatae, Muhammad Fikko Fadjrimiratno, Tetsu Matsukawa, and Einoshin Suzuki
    • Journal Title

      Foundations of Intelligent Systems, LNCS (ISMIS 2020)

      Volume: in press

    • Related Report
      2019 Annual Research Report
    • Peer Reviewed / Open Access
  • [Journal Article] Harnessing GAN with Metric Learning for One-Shot Generation on a Fine-Grained Category2019

    • Author(s)
      Yusuke Ohtsubo, Tetsu Matsukawa, Einoshin Suzuki
    • Journal Title

      Proc. 31st International Conference on Tools with Artificial Intelligence (ICTAI 2019)

      Volume: - Pages: 891-898

    • DOI

      10.1109/ictai.2019.00126

    • Related Report
      2019 Annual Research Report
    • Peer Reviewed / Open Access
  • [Journal Article] 弱教師つきデータ集合を用いるファッションスタイルの特徴学習に関する実験的評価2019

    • Author(s)
      本藤 拳也,松川徹,鈴木英之進
    • Journal Title

      火の国情報シンポジウム2019

      Volume: -

    • Related Report
      2018 Annual Research Report
    • Open Access
  • [Journal Article] Multimodal Deep Neural Network with Image Sequence Features for Video Captioning2018

    • Author(s)
      Soichiro Oura, Tetsu Matsukawa, Einoshin Suzuki
    • Journal Title

      Proc. 2018 International Joint Conference on Neural Networks (IJCNN 2018)

      Volume: - Pages: 3296-3302

    • DOI

      10.1109/ijcnn.2018.8489668

    • Related Report
      2018 Annual Research Report
    • Peer Reviewed / Open Access
  • [Journal Article] Retraining: A Simple Way to Improve the Ensemble Accuracy of Deep Neural Networks for Image Classification2018

    • Author(s)
      Kaikai Zhao, Tetsu Matsukawa, Einoshin Suzuki
    • Journal Title

      Proc. 25th International Conference on Pattern Recognition (ICPR 2018)

      Volume: - Pages: 860-867

    • DOI

      10.1109/icpr.2018.8545535

    • Related Report
      2018 Annual Research Report
    • Peer Reviewed / Open Access
  • [Presentation] Detecting Anomalies from Human Activities by an Autonomous Mobile Robot Based on "Fast and Slow" Thinking2021

    • Author(s)
      Muhammad Fikko Fadjrimiratno
    • Organizer
      Sixteenth International Conference on Computer Vision Theory and Applications (VISAPP 2021)
    • Related Report
      2020 Annual Research Report
    • Int'l Joint Research
  • [Presentation] Adversarial Minority-Class Re-Sampling for Imbalanced Sequence Classification2021

    • Author(s)
      Shin Ando
    • Organizer
      Tenth International Conference on Pattern Recognition Applications and Methods (ICPRAM 2021)
    • Related Report
      2020 Annual Research Report
    • Int'l Joint Research
  • [Presentation] Visually-Private Scene Classification with Agent-collected Weak-labels2021

    • Author(s)
      Shin Ando
    • Organizer
      Thirteenth International Conference on Agents and Artificial Intelligence (ICAART 2021)
    • Related Report
      2020 Annual Research Report
    • Int'l Joint Research
  • [Presentation] Hybrid Context-Aware Word Sense Disambiguation in Topic Modeling based Document Representation2020

    • Author(s)
      Wenbo Li
    • Organizer
      2020 IEEE International Conference on Data Mining (ICDM 2020)
    • Related Report
      2020 Annual Research Report
    • Int'l Joint Research
  • [Presentation] Detecting Anomalous Regions from an Image Based on Deep Captioning2020

    • Author(s)
      Yusuke Hatae, Qingpu Yang, Muhammad Fikko Fadjrimiratno, Yuanyuan Li, Tetsu Matsukawa, Einoshin Suzuki
    • Organizer
      Fifteenth International Conference on Computer Vision Theory and Applications (VISAPP 2020))
    • Related Report
      2019 Annual Research Report
    • Int'l Joint Research
  • [Presentation] Harnessing GAN with Metric Learning for One-Shot Generation on a Fine-Grained Category2019

    • Author(s)
      Yusuke Ohtsubo, Tetsu Matsukawa, Einoshin Suzuki
    • Organizer
      31st International Conference on Tools with Artificial Intelligence (ICTAI 2019)
    • Related Report
      2019 Annual Research Report
    • Int'l Joint Research
  • [Presentation] 弱教師つきデータ集合を用いるファッションスタイルの特徴学習に関する実験的評価2019

    • Author(s)
      本藤 拳也
    • Organizer
      火の国情報シンポジウム2019
    • Related Report
      2018 Annual Research Report
  • [Presentation] Multimodal Deep Neural Network with Image Sequence Features for Video Captioning2018

    • Author(s)
      Einoshin Suzuki
    • Organizer
      2018 International Joint Conference on Neural Networks (IJCNN 2018)
    • Related Report
      2018 Annual Research Report
    • Int'l Joint Research
  • [Presentation] Retraining: A Simple Way to Improve the Ensemble Accuracy of Deep Neural Networks for Image Classification2018

    • Author(s)
      Kaikai Zhao
    • Organizer
      25th International Conference on Pattern Recognition (ICPR 2018)
    • Related Report
      2018 Annual Research Report
    • Int'l Joint Research
  • [Remarks] ストリームデータからの弱ラベル情報を用いる異常・例外パターンマイニング

    • URL

      http://www.i.kyushu-u.ac.jp/~suzuki/kaken1820-j.html

    • Related Report
      2020 Annual Research Report 2019 Annual Research Report 2018 Annual Research Report
  • [Remarks] Anomoulous/Exceptional Pattern Mining

    • URL

      http://www.i.kyushu-u.ac.jp/~suzuki/kaken1820.html

    • Related Report
      2020 Annual Research Report 2019 Annual Research Report 2018 Annual Research Report

URL: 

Published: 2018-04-23   Modified: 2022-01-27  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi