• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Classifying vegetation using deep learning: clarification of characteristics of vegetation

Research Project

Project/Area Number 18H03357
Research Category

Grant-in-Aid for Scientific Research (B)

Allocation TypeSingle-year Grants
Section一般
Review Section Basic Section 63010:Environmental dynamic analysis-related
Research InstitutionKyoto University

Principal Investigator

ISE TAKESHI  京都大学, フィールド科学教育研究センター, 准教授 (00518318)

Co-Investigator(Kenkyū-buntansha) 佐藤 永  国立研究開発法人海洋研究開発機構, 地球環境部門(北極環境変動総合研究センター), 研究員 (50392965)
渡部 俊太郎  京都大学, フィールド科学教育研究センター, 研究員 (00782335)
Project Period (FY) 2018-04-01 – 2023-03-31
Project Status Completed (Fiscal Year 2022)
Budget Amount *help
¥17,030,000 (Direct Cost: ¥13,100,000、Indirect Cost: ¥3,930,000)
Fiscal Year 2022: ¥1,300,000 (Direct Cost: ¥1,000,000、Indirect Cost: ¥300,000)
Fiscal Year 2021: ¥1,300,000 (Direct Cost: ¥1,000,000、Indirect Cost: ¥300,000)
Fiscal Year 2020: ¥5,720,000 (Direct Cost: ¥4,400,000、Indirect Cost: ¥1,320,000)
Fiscal Year 2019: ¥5,720,000 (Direct Cost: ¥4,400,000、Indirect Cost: ¥1,320,000)
Fiscal Year 2018: ¥2,990,000 (Direct Cost: ¥2,300,000、Indirect Cost: ¥690,000)
Keywords人工知能 / CNN / 非接触観測 / 外来生物 / 林業 / 物質循環 / 生物多様性 / 深層学習 / 自動識別 / リモートセンシング / コンピュータビジョン / 外来種
Outline of Final Research Achievements

This study was conducted with the goal of making innovative advances in the use of deep learning for non-contact and non-destructive observations of vegetation. Deep learning techniques were developed and refined, and experiments were conducted to identify multiple target vegetation types. As a result, we were able to obtain good results in estimating the type and size of forest vegetation, as well as the distribution of invasive plants. The developed deep learning technique has potential for various applications in the future.

Academic Significance and Societal Importance of the Research Achievements

本研究によって、従来は識別が困難とされていた不定形な植物を画像中で認識することが可能となった。ドライブレコーダーのような手段で撮影された画像からも特定の植物を認識することが可能であることが示されたため、今後は効率的に収集された大量の画像データを自動処理し、人力では不可能な範囲における植物の分布を一律の基準で定量的に推定することにつながる。これは、外来植物の分布の把握や、植物が人の心理に与える文化的生態系サービスの理解など、多様な社会的意義を持つ。

Report

(6 results)
  • 2022 Annual Research Report   Final Research Report ( PDF )
  • 2021 Annual Research Report
  • 2020 Annual Research Report
  • 2019 Annual Research Report
  • 2018 Annual Research Report
  • Research Products

    (31 results)

All 2022 2021 2020 2019

All Journal Article (11 results) (of which Peer Reviewed: 9 results,  Open Access: 4 results) Presentation (19 results) (of which Int'l Joint Research: 2 results) Book (1 results)

  • [Journal Article] Predicting global terrestrial biomes with the LeNet convolutional neural network2022

    • Author(s)
      Sato Hisashi、Ise Takeshi
    • Journal Title

      Geoscientific Model Development

      Volume: 15 Issue: 7 Pages: 3121-3132

    • DOI

      10.5194/gmd-15-3121-2022

    • Related Report
      2022 Annual Research Report
  • [Journal Article] Practicality and Robustness of Tree Species Identification Using UAV RGB Image and Deep Learning in Temperate Forest in Japan2022

    • Author(s)
      Masanori Onishi, Shuntaro Watanabe, Tadashi Nakashima, Takeshi Ise
    • Journal Title

      Remote Sensing

      Volume: 14 Issue: 7 Pages: 1-22

    • DOI

      10.3390/rs14071710

    • Related Report
      2022 Annual Research Report 2021 Annual Research Report
    • Peer Reviewed / Open Access
  • [Journal Article] CORRESPONDENCE BETWEEN FEELINGS TOWARDS NEIGHBORS AND APPEARANCE OF NEIGHBORHOOD: ANALYSIS BY COMBINING A MAIL SURVEY AND GOOGLE STREET VIEW2022

    • Author(s)
      UCHIDA Atsuhiko、ISE Takeshi、MINOURA Yukihisa、HITOKOTO Hidefumi、TAKEMURA Kosuke、UCHIDA Yukiko
    • Journal Title

      PSYCHOLOGIA

      Volume: 64 Issue: 2 Pages: 112-135

    • DOI

      10.2117/psysoc.2021-B023

    • ISSN
      0033-2852, 1347-5916
    • Related Report
      2022 Annual Research Report
    • Peer Reviewed
  • [Journal Article] Automatic detection of alien plant species in action camera images using the chopped picture method and the potential of citizen science2022

    • Author(s)
      Takaya Kosuke、Sasaki Yu、Ise Takeshi
    • Journal Title

      Breeding Science

      Volume: 72 Issue: 1 Pages: 96-106

    • DOI

      10.1270/jsbbs.21062

    • NAID

      130008158096

    • ISSN
      1344-7610, 1347-3735
    • Related Report
      2021 Annual Research Report
    • Peer Reviewed
  • [Journal Article] Assessing streetscape greenery with deep neural network using Google Street View2022

    • Author(s)
      Kameoka Taishin、Uchida Atsuhiko、Sasaki Yu、Ise Takeshi
    • Journal Title

      Breeding Science

      Volume: 72 Issue: 1 Pages: 107-114

    • DOI

      10.1270/jsbbs.21073

    • NAID

      130008163780

    • ISSN
      1344-7610, 1347-3735
    • Related Report
      2021 Annual Research Report
    • Peer Reviewed
  • [Journal Article] Explainable identification and mapping of trees using UAV RGB image and deep learning2021

    • Author(s)
      Masanori Onishi, Takeshi Ise
    • Journal Title

      scientific reports

      Volume: 11 Issue: 1

    • DOI

      10.1038/s41598-020-79653-9

    • Related Report
      2020 Annual Research Report 2019 Annual Research Report
    • Peer Reviewed / Open Access
  • [Journal Article] マクロ生物学分野における画像認識・識別技術の利用2021

    • Author(s)
      渡部俊太郎、伊勢武史
    • Journal Title

      画像ラボ

      Volume: 32 Pages: 45-50

    • Related Report
      2020 Annual Research Report 2019 Annual Research Report
  • [Journal Article] Applying deep learning in ecology: identifying vegetation and plant species2020

    • Author(s)
      渡部俊太郎、大西信徳、皆川まり、伊勢武史
    • Journal Title

      Japanese Journal of Conservation Ecology

      Volume: 25 Issue: 1 Pages: n/a

    • DOI

      10.18960/hozen.1822

    • NAID

      130007866089

    • ISSN
      1342-4327, 2424-1431
    • Year and Date
      2020-03-05
    • Related Report
      2018 Annual Research Report
    • Peer Reviewed / Open Access
  • [Journal Article] VARENN: graphical representation of periodic data and application to climate studies2020

    • Author(s)
      Ise Takeshi、Oba Yurika
    • Journal Title

      npj Climate and Atmospheric Science

      Volume: 3 Issue: 1

    • DOI

      10.1038/s41612-020-0129-x

    • NAID

      120006875255

    • Related Report
      2020 Annual Research Report 2019 Annual Research Report
    • Peer Reviewed / Open Access
  • [Journal Article] Explainable Deep Learning Reproduces a ‘Professional Eye’ on the Diagnosis of Internal Disorders in Persimmon Fruit2020

    • Author(s)
      Akagi Takashi、Onishi Masanori、Masuda Kanae、Kuroki Ryohei、Baba Kohei、Takeshita Kouki、Suzuki Tetsuya、Niikawa Takeshi、Uchida Seiichi、Ise Takeshi
    • Journal Title

      Plant and Cell Physiology

      Volume: 61 Issue: 11 Pages: 1967-1973

    • DOI

      10.1093/pcp/pcaa111

    • Related Report
      2020 Annual Research Report 2019 Annual Research Report
    • Peer Reviewed
  • [Journal Article] Identifying the vegetation type in Google Earth images using a convolutional neural network: a case study for Japanese bamboo forests2020

    • Author(s)
      Watanabe Shuntaro、Sumi Kazuaki、Ise Takeshi
    • Journal Title

      BMC Ecology

      Volume: 20 Issue: 1

    • DOI

      10.1186/s12898-020-00331-5

    • Related Report
      2020 Annual Research Report 2019 Annual Research Report
    • Peer Reviewed
  • [Presentation] ディープラーニングで実現するシチズンサイエンス2022

    • Author(s)
      伊勢武史
    • Organizer
      日本生態学会第69回全国大会
    • Related Report
      2021 Annual Research Report
  • [Presentation] ドローンとディープラーニングを用いた単木単位での樹種・材積推定GISシステムの開発2022

    • Author(s)
      大西信徳, 伊勢武史
    • Organizer
      日本生態学会第69回全国大会
    • Related Report
      2021 Annual Research Report
  • [Presentation] Heterogeneity of land-sea connectivity across Japan2022

    • Author(s)
      Oba Y, Ise T
    • Organizer
      日本生態学会第69回全国大会
    • Related Report
      2021 Annual Research Report
  • [Presentation] ディープラーニングを用いたオオサンショウウオの個体識別2022

    • Author(s)
      高屋浩介, 田口勇輝, 伊勢武史
    • Organizer
      日本生態学会第69回全国大会
    • Related Report
      2021 Annual Research Report
  • [Presentation] Using deep learning to reveal the distribution of thermokarst2021

    • Author(s)
      Takaya K, Ise T
    • Organizer
      第12回極域科学シンポジウム
    • Related Report
      2021 Annual Research Report
  • [Presentation] Toward high-throughput forest inventory with deep learning2021

    • Author(s)
      Ise T
    • Organizer
      iLEAPS Japan 2021
    • Related Report
      2021 Annual Research Report
    • Int'l Joint Research
  • [Presentation] Automatic detection of thermokarst in satellite images using deep learning2021

    • Author(s)
      Takaya K, Ise T
    • Organizer
      iLEAPS Japan 2021
    • Related Report
      2021 Annual Research Report
    • Int'l Joint Research
  • [Presentation] ディープラーニングを用いたセイタカアワダチソウの自動識別2021

    • Author(s)
      高屋浩介, 家島輝, 芝田篤紀, 伊勢武史
    • Organizer
      日本生態学会
    • Related Report
      2019 Annual Research Report
  • [Presentation] シチズンサイエンスによる環境データ取得と社会発信2021

    • Author(s)
      伊勢武史
    • Organizer
      日本生態学会
    • Related Report
      2019 Annual Research Report
  • [Presentation] ドローンとディープラーニングを用いたボルネオでの指標樹種識別と森林健全度評価2021

    • Author(s)
      大西 信徳、竹重 龍一、青柳 亮太、今井 伸夫、伊勢 武史、北山 兼弘
    • Organizer
      日本生態学会
    • Related Report
      2019 Annual Research Report
  • [Presentation] 自然を知り環境を守るための新技術・新発想2021

    • Author(s)
      伊勢武史
    • Organizer
      日本生態学会
    • Related Report
      2019 Annual Research Report
  • [Presentation] ディープラーニングを用いたセイタカアワダチソウの自動識別2020

    • Author(s)
      高屋浩介, 家島輝, 芝田篤紀, 伊勢武史
    • Organizer
      日本生態学会第68回全国大会
    • Related Report
      2020 Annual Research Report
  • [Presentation] シチズンサイエンスによる環境データ取得と社会発信2020

    • Author(s)
      伊勢武史
    • Organizer
      日本生態学会第68回全国大会
    • Related Report
      2020 Annual Research Report
  • [Presentation] ドローンとディープラーニングを用いたボルネオでの指標樹種識別と森林健全度評価2020

    • Author(s)
      大西 信徳、竹重 龍一、青柳 亮太、今井 伸夫、伊勢 武史、北山 兼弘
    • Organizer
      日本生態学会第68回全国大会
    • Related Report
      2020 Annual Research Report
  • [Presentation] 自然を知り環境を守るための新技術・新発想2020

    • Author(s)
      伊勢 武史
    • Organizer
      日本生態学会第68回全国大会
    • Related Report
      2020 Annual Research Report
  • [Presentation] Estimating the species level leaf phenology patterns of broad leaved deciduous tree using data assimilation.2020

    • Author(s)
      Shuntaro Watanabe, Shigeki Ikeda, Kazuhito Ichii, Takeshi Ise
    • Organizer
      日本生態学会
    • Related Report
      2018 Annual Research Report
  • [Presentation] 畳み込みニューラルネットワークによる衛星写真中の植生識別2019

    • Author(s)
      渡部俊太郎、伊勢武史
    • Organizer
      種生物学会シンポジウム2019
    • Related Report
      2018 Annual Research Report
  • [Presentation] Forecasting the species specific leaf out phenology in Japan archipelago. Data assimilation approach2019

    • Author(s)
      Shuntaro Watanabe
    • Organizer
      マクロ生物学百花繚乱2019
    • Related Report
      2018 Annual Research Report
  • [Presentation] 畳み込みニューラルネットワークによる航空写真中の植生識別とその応用2019

    • Author(s)
      渡部 俊太郎、角 和暁、伊勢 武史
    • Organizer
      日本地球惑星科学連合2019年大会
    • Related Report
      2018 Annual Research Report
  • [Book] 2050年の地球を予測する2022

    • Author(s)
      伊勢 武史
    • Total Pages
      176
    • Publisher
      筑摩書房
    • ISBN
      9784480684189
    • Related Report
      2021 Annual Research Report

URL: 

Published: 2018-04-23   Modified: 2024-01-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi