Project/Area Number |
18H03400
|
Research Category |
Grant-in-Aid for Scientific Research (B)
|
Allocation Type | Single-year Grants |
Section | 一般 |
Review Section |
Basic Section 64020:Environmental load reduction and remediation-related
|
Research Institution | Shizuoka University |
Principal Investigator |
|
Co-Investigator(Kenkyū-buntansha) |
新谷 政己 静岡大学, 工学部, 准教授 (20572647)
|
Project Period (FY) |
2018-04-01 – 2021-03-31
|
Project Status |
Completed (Fiscal Year 2020)
|
Budget Amount *help |
¥17,420,000 (Direct Cost: ¥13,400,000、Indirect Cost: ¥4,020,000)
Fiscal Year 2020: ¥5,200,000 (Direct Cost: ¥4,000,000、Indirect Cost: ¥1,200,000)
Fiscal Year 2019: ¥5,590,000 (Direct Cost: ¥4,300,000、Indirect Cost: ¥1,290,000)
Fiscal Year 2018: ¥6,630,000 (Direct Cost: ¥5,100,000、Indirect Cost: ¥1,530,000)
|
Keywords | 廃水処理 / 微生物生態学 / 微生物燃料電池 / 環境微生物 / 嫌気 / 嫌気微生物 / 細胞外電子伝達機構 / 硫酸還元細菌 / 代謝 / 微生物 / 細胞外電子授受 / 微生物電子共生系 / 嫌気廃水処理 / 嫌気的廃水処理 / バイオミネラル / 嫌気性廃水処理 / バイオコンバージョン |
Outline of Final Research Achievements |
A rechargeable biomineral (RBM) produced from strain HK-II was set in microbial fuel cells (MFCs), and its performance was investigated in laboratory scale for efficient anaerobic wastewater treatment technology. The MFCs suppressed the overproduction of excess activated sludge, whereas the efficiency of wastewater treatment was 10% to 15% of aerobic wastewater treatment, suggesting the importance of electron flow under anaerobic conditions. Microbial electric symbiosis was constructed using RBM and a lake sediment. Methane-production rate increased with increased acetate-consumption rate, although acetate is one of the end products under anaerobic bioconversion. The result suggest that organic compounds conversion was enhanced by the microbial electric symbiosis via RBM. These results suggested the efficient anaerobic wastewater treatment using RBM was confirmed and it is expected to improve the efficiency with increase of the contacting surface area with RBM and wastewater.
|
Academic Significance and Societal Importance of the Research Achievements |
酸素のない嫌気的環境下における微生物による物質変換能力は、低エネルギー型廃水処理技術の構築にとって必須である一方、その効率化が最大の課題である。本研究では、学術的に関心が持たれている生物の新規呼吸形態である細胞外電子伝達と微生物由来蓄電性ミネラルに着目し、ひょっとすると自然界では一般的な現象かもしれないーしかし、これまでほとんど着目されなかったー微生物電子共生系の理解と嫌気的廃水処理効率の向上化に資する知見を得ており、学術的および社会的に意義ある研究と考えられる。
|