Increasing efficiency of carbon dioxide recycling reaction using integrated reaction system by membrane reactor
Project/Area Number |
18H03419
|
Research Category |
Grant-in-Aid for Scientific Research (B)
|
Allocation Type | Single-year Grants |
Section | 一般 |
Review Section |
Basic Section 64050:Sound material-cycle social systems-related
|
Research Institution | Gifu University |
Principal Investigator |
|
Co-Investigator(Kenkyū-buntansha) |
宮本 学 岐阜大学, 工学部, 准教授 (60538180)
|
Project Period (FY) |
2018-04-01 – 2021-03-31
|
Project Status |
Completed (Fiscal Year 2021)
|
Budget Amount *help |
¥17,550,000 (Direct Cost: ¥13,500,000、Indirect Cost: ¥4,050,000)
Fiscal Year 2020: ¥2,860,000 (Direct Cost: ¥2,200,000、Indirect Cost: ¥660,000)
Fiscal Year 2019: ¥5,200,000 (Direct Cost: ¥4,000,000、Indirect Cost: ¥1,200,000)
Fiscal Year 2018: ¥9,490,000 (Direct Cost: ¥7,300,000、Indirect Cost: ¥2,190,000)
|
Keywords | メンブレンリアクター / プロセス強化 / 二酸化炭素 / アンモニア / 水素 / メタン化 / 反応シミュレーション / カーボンサイクル / 複合化 / 化学反応シミュレーション / 資源化 / 触媒活性 |
Outline of Final Research Achievements |
The application of a membrane reactor capable of effective mass transfer and heat transfer to the combined reaction process of converting ammonia derived from renewable energy into hydrogen and reacting it with CO2 to produce methane was investiagted. As catalysts suitable for reaction conditions in the membrane reactor, Ru/Ba/γ-Al2O3 and Ru/ZrO2 were developed for NH3 decomposition and CO2 methanation, respectively. Simulation analysis was carried out with creating a reaction model in parallel with the experiments for the membrane reactor. It was found that the development of a highly active NH3 decomposition catalyst and superior hydrogen-permeable membrane are the most important issues in aiming to improve the efficiency of cobined reaction process using a hydrogen-permeable membrane reactor.
|
Academic Significance and Societal Importance of the Research Achievements |
地球温暖化対策としてCO2の資源化(カーボンリサイクル)には、従来にない高効率な化学プロセスが必要と言える。高効率化の一つの試みが、反応を分離・精製さらには加熱や冷却などの単位操作と組み合わせによる集積化であり、単にプロセスの簡略化のみではなく、既存の化学プロセスではなしえなかった相乗効果が期待できる。再生可能エネルギー由来のアンモニアを水素に再転換しCO2と反応させてメタンを製造する複合化反応プロセスに適した触媒を開発し、反応のシミュレーション解析により高活性なNH3分解触媒および水素透過膜の開発がシステムの効率化を目指す上で重要な課題であることを示すことができた。
|
Report
(4 results)
Research Products
(9 results)