• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Construction of feature extraction method for turbulence big data by machine learning

Research Project

Project/Area Number 18H03758
Research Category

Grant-in-Aid for Scientific Research (A)

Allocation TypeSingle-year Grants
Section一般
Review Section Medium-sized Section 19:Fluid engineering, thermal engineering, and related fields
Research InstitutionKeio University

Principal Investigator

Fukagata Koji  慶應義塾大学, 理工学部(矢上), 教授 (80361517)

Co-Investigator(Kenkyū-buntansha) 山本 誠  東京理科大学, 工学部機械工学科, 教授 (20230584)
岩本 薫  東京農工大学, 工学(系)研究科(研究院), 教授 (50408712)
長谷川 洋介  東京大学, 生産技術研究所, 准教授 (30396783)
塚原 隆裕  東京理科大学, 理工学部機械工学科, 准教授 (60516186)
福島 直哉  東海大学, 工学部, 講師 (80585240)
守 裕也  電気通信大学, 大学院情報理工学研究科, 准教授 (80706383)
Project Period (FY) 2018-04-01 – 2021-03-31
Project Status Completed (Fiscal Year 2020)
Budget Amount *help
¥45,370,000 (Direct Cost: ¥34,900,000、Indirect Cost: ¥10,470,000)
Fiscal Year 2020: ¥9,230,000 (Direct Cost: ¥7,100,000、Indirect Cost: ¥2,130,000)
Fiscal Year 2019: ¥9,880,000 (Direct Cost: ¥7,600,000、Indirect Cost: ¥2,280,000)
Fiscal Year 2018: ¥26,260,000 (Direct Cost: ¥20,200,000、Indirect Cost: ¥6,060,000)
Keywords流体力学 / 乱流 / ビッグデータ / 機械学習 / 低次元モデル
Outline of Final Research Achievements

The purpose of this study is to apply the machine learning technology to "turbulent big data" to extract the nonlinear mode, which is the essence of the self-generation maintenance mechanism of turbulence and cannot be extracted by the conventional linear theory, and to detive its time evolution equation to construct a new nonlinear feature extraction method. In this study, we use an autoencoder based on convolutional neural networks to extract the features of flow fields by compressing high-dimensional flow field information into low-dimensional latent variables, and by using a sparse regression method to derive the equations that govern the time evolution of the latent variables. While this method can extract features with sufficient accuracy for unsteady flows around a cylinder, it was suggested that further reduction in dimension is necessary for turbulent flows.

Academic Significance and Societal Importance of the Research Achievements

本研究では、完全な流れ場データの低次元化による物理的理解にとどまらず、未知の物体周りの流れの予測や不十分なデータからの予測など、流体力学の諸問題への機械学習の応用が大きな可能性を有していることを示した。本研究の成果は、理論、実験、数値シミュションに続く「第4の流体力学」である「データ駆動流体力学」の基盤整備に貢献し、支配方程式・構成方程式が確立されていない流れ場データへの応用の可能性を示唆するものである。

Report

(4 results)
  • 2020 Annual Research Report   Final Research Report ( PDF )
  • 2019 Annual Research Report
  • 2018 Annual Research Report
  • Research Products

    (167 results)

All 2021 2020 2019 2018 Other

All Int'l Joint Research (5 results) Journal Article (37 results) (of which Int'l Joint Research: 12 results,  Peer Reviewed: 26 results,  Open Access: 17 results) Presentation (118 results) (of which Int'l Joint Research: 50 results,  Invited: 32 results) Book (2 results) Remarks (5 results)

  • [Int'l Joint Research] UCLA/Argonne National Laboratory/Brown University(米国)

    • Related Report
      2020 Annual Research Report
  • [Int'l Joint Research] UCLA/Johns Hopkins University/Brown University(米国)

    • Related Report
      2019 Annual Research Report
  • [Int'l Joint Research] Max Planck Institute HLR(ドイツ)

    • Related Report
      2019 Annual Research Report
  • [Int'l Joint Research] 南カリフォルニア大学/フロリダ州立大学/カリフォルニア大学ロサンゼルス校(米国)

    • Related Report
      2018 Annual Research Report
  • [Int'l Joint Research] カールスルーエ工科大学(ドイツ)

    • Related Report
      2018 Annual Research Report
  • [Journal Article] Prediction of Pulsating Turbulent Pipe Flow Using Machine Learning2021

    • Author(s)
      志村 敬彬,光石 暁彦,岩本 薫
    • Journal Title

      Journal of the Combustion Society of Japan

      Volume: 63 Issue: 203 Pages: 52-59

    • DOI

      10.20619/jcombsj.63.203_52

    • NAID

      130008007477

    • ISSN
      1347-1864, 2424-1687
    • Year and Date
      2021-02-15
    • Related Report
      2020 Annual Research Report
    • Peer Reviewed
  • [Journal Article] Machine-learning-based spatio-temporal super resolution reconstruction of turbulent flows2021

    • Author(s)
      K. Fukami, K. Fukagata, K. Taira
    • Journal Title

      Journal of Fluid Mechanics

      Volume: 909

    • DOI

      10.1017/jfm.2020.948

    • Related Report
      2020 Annual Research Report
    • Peer Reviewed / Open Access
  • [Journal Article] Convolutional neural network and long short-term memory based reduced order surrogate for minimal turbulent channel flow2021

    • Author(s)
      T. Nakamura, K. Fukami, K. Hasegawa, Y. Nabae, K. Fukagata
    • Journal Title

      Physics of Fluids

      Volume: 33 Issue: 2 Pages: 025116-025116

    • DOI

      10.1063/5.0039845

    • Related Report
      2020 Annual Research Report
    • Peer Reviewed
  • [Journal Article] Prediction of the drag reduction effect of pulsating pipe flow based on machine learning2021

    • Author(s)
      W. Kobayashi, T. Shimura, A. Mitsuishi, K. Iwamoto and A. Murata
    • Journal Title

      International Journal of Heat and Fluid Flow

      Volume: 88 Pages: 108783-108783

    • DOI

      10.1016/j.ijheatfluidflow.2021.108783

    • Related Report
      2020 Annual Research Report
    • Peer Reviewed
  • [Journal Article] Dissimilar heat transfer enhancement in a fully developed laminar channel flow subjected to a traveling wave-like wall blowing and suction2021

    • Author(s)
      Kaithakkal Arjun J.、Kametani Yukinori、Hasegawa Yosuke
    • Journal Title

      International Journal of Heat and Mass Transfer

      Volume: 164 Pages: 120485-120485

    • DOI

      10.1016/j.ijheatmasstransfer.2020.120485

    • Related Report
      2020 Annual Research Report
    • Peer Reviewed / Open Access
  • [Journal Article] Estimation of turbulent channel flow based on time-series wall measurements2020

    • Author(s)
      劉竺辰、長谷川洋介
    • Journal Title

      SEISAN KENKYU

      Volume: 72 Issue: 1 Pages: 5-8

    • DOI

      10.11188/seisankenkyu.72.5

    • NAID

      130007792528

    • ISSN
      0037-105X, 1881-2058
    • Year and Date
      2020-01-01
    • Related Report
      2019 Annual Research Report
    • Open Access
  • [Journal Article] Drag reduction in turbulent channel flow by large-scale optimal control input2020

    • Author(s)
      伊藤宗嵩、長谷川洋介
    • Journal Title

      SEISAN KENKYU

      Volume: 72 Issue: 1 Pages: 9-13

    • DOI

      10.11188/seisankenkyu.72.9

    • NAID

      130007792593

    • ISSN
      0037-105X, 1881-2058
    • Year and Date
      2020-01-01
    • Related Report
      2019 Annual Research Report
    • Open Access
  • [Journal Article] Budget analysis of dissimilarity between turbulent heat and momentum transfer in wall turbulence2020

    • Author(s)
      Kaithakkal, A. J., Kametani, Y., Hsegawa, Y.
    • Journal Title

      SEISAN KENKYU

      Volume: 72 Issue: 1 Pages: 15-18

    • DOI

      10.11188/seisankenkyu.72.15

    • NAID

      130007792510

    • ISSN
      0037-105X, 1881-2058
    • Year and Date
      2020-01-01
    • Related Report
      2019 Annual Research Report
    • Open Access
  • [Journal Article] Machine-learning-based reduced-order modeling for unsteady flows around bluff bodies of various shapes2020

    • Author(s)
      K. Hasegawa, K. Fukami, T. Murata, and K. Fukagata
    • Journal Title

      Theoretical and Computational Fluid Dynamics

      Volume: 34 Issue: 4 Pages: 367-383

    • DOI

      10.1007/s00162-020-00528-w

    • Related Report
      2020 Annual Research Report
    • Peer Reviewed
  • [Journal Article] Assessment of supervised machine learning methods for fluid flows2020

    • Author(s)
      K. Fukami, K. Fukagata, K. Taira
    • Journal Title

      Theoretical and Computational Fluid Dynamics

      Volume: 34 Issue: 4 Pages: 497-519

    • DOI

      10.1007/s00162-020-00518-y

    • Related Report
      2020 Annual Research Report
    • Peer Reviewed / Int'l Joint Research
  • [Journal Article] Resolvent analysis of turbulent channel flow with manipulated mean velocity profile2020

    • Author(s)
      R. Uekusa, A. Kawagoe, Y. Nabae, K. Fukagata
    • Journal Title

      Journal of Fluid Science and Technology

      Volume: 15 Issue: 3 Pages: JFST0014-JFST0014

    • DOI

      10.1299/jfst.2020jfst0014

    • NAID

      130007835894

    • ISSN
      1880-5558
    • Related Report
      2020 Annual Research Report
    • Peer Reviewed / Open Access
  • [Journal Article] Convolutional neural network based hierarchical autoencoder for nonlinear mode decomposition of fluid field data2020

    • Author(s)
      K. Fukami, T. Nakamura, K. Fukagata
    • Journal Title

      Physics of Fluids

      Volume: 32 Issue: 9 Pages: 095110-095110

    • DOI

      10.1063/5.0020721

    • Related Report
      2020 Annual Research Report
    • Peer Reviewed
  • [Journal Article] Probabilistic neural networks for fluid flow surrogate modeling and data recovery2020

    • Author(s)
      R. Maulik, K. Fukami, N. Ramachandra, K. Fukagata, K. Taira
    • Journal Title

      Physical Review Fluids

      Volume: 5 Issue: 10 Pages: 104001-104001

    • DOI

      10.1103/physrevfluids.5.104401

    • Related Report
      2020 Annual Research Report
    • Peer Reviewed / Int'l Joint Research
  • [Journal Article] CNN-LSTM based reduced order modeling of two-dimensional unsteady flows around a circular cylinder at different Reynolds numbers2020

    • Author(s)
      K. Hasegawa, K. Fukami, T. Murata, K. Fukagata
    • Journal Title

      Fluid Dynamics Research

      Volume: 52 Issue: 6 Pages: 065501-065501

    • DOI

      10.1088/1873-7005/abb91d

    • Related Report
      2020 Annual Research Report
    • Peer Reviewed
  • [Journal Article] 機械学習に基づくデータ拡張によるPIV の精度向上2020

    • Author(s)
      森本 将生,深見 開,長谷川 一登,村田 高彬,村上 光,深潟 康二
    • Journal Title

      ながれ

      Volume: 39 Pages: 84-87

    • Related Report
      2020 Annual Research Report
    • Open Access
  • [Journal Article] 階層型CNNオートエンコーダを用いた流れ場の非線形モードの抽出2020

    • Author(s)
      中村 太一,深見 開,深潟 康二
    • Journal Title

      ながれ

      Volume: 39 Pages: 316-319

    • Related Report
      2020 Annual Research Report
    • Open Access
  • [Journal Article] 機械学習を用いた乱流ビッグデータ解析に向けて2020

    • Author(s)
      深潟 康二,深見 開
    • Journal Title

      計測と制御

      Volume: 59 Pages: 571-576

    • NAID

      130007889464

    • Related Report
      2020 Annual Research Report
  • [Journal Article] Numerical simulation of the anti-icing performance of electric heaters for icing on the NACA 0012 airfoil2020

    • Author(s)
      S. Uranai, K. Fukudome, H. Mamori, N. Fukushima, M. Yamamoto
    • Journal Title

      Aerospace

      Volume: 7 Issue: 9 Pages: 123-123

    • DOI

      10.3390/aerospace7090123

    • Related Report
      2020 Annual Research Report
    • Peer Reviewed / Open Access
  • [Journal Article] Nonlinear mode decomposition with convolutional neural networks for fluid dynamics2020

    • Author(s)
      Takaaki Murata, Kai Fukami, Koji Fukagata
    • Journal Title

      Journal of Fluid Mechanics

      Volume: 882

    • DOI

      10.1017/jfm.2019.822

    • Related Report
      2019 Annual Research Report
    • Peer Reviewed
  • [Journal Article] Dissimilarity between turbulent heat and momentum transfer induced by a streamwise travelling wave of wall blowing and suction2020

    • Author(s)
      Kaithakkal, A. J., Kametani, Y., Hsegawa, Y.
    • Journal Title

      Journal of Fluid Mechanics

      Volume: 886

    • DOI

      10.1017/jfm.2019.1045

    • Related Report
      2019 Annual Research Report
    • Peer Reviewed / Open Access / Int'l Joint Research
  • [Journal Article] Super-resolution reconstruction of turbulent flows with machine learning2019

    • Author(s)
      Kai Fukami, Koji Fukagata, Kunihiko Taira
    • Journal Title

      Journal of Fluid Mechanics

      Volume: 870 Pages: 106-120

    • DOI

      10.1017/jfm.2019.238

    • Related Report
      2019 Annual Research Report
    • Peer Reviewed / Int'l Joint Research
  • [Journal Article] Spatial reconstruction of steady scalar sources from remote measurements in turbulent flow2019

    • Author(s)
      Wang, Q., Hasegawa, Y., Zaki, T.
    • Journal Title

      Journal of Fluid Mechanics

      Volume: 870 Pages: 316-352

    • DOI

      10.1017/jfm.2019.241

    • Related Report
      2019 Annual Research Report
    • Peer Reviewed / Open Access / Int'l Joint Research
  • [Journal Article] Synthetic turbulent inflow generator using machine learning2019

    • Author(s)
      Kai Fukami, Yusuke Nabae, Ken Kawai, Koji Fukagata
    • Journal Title

      Physical Review Fluids

      Volume: 4 Issue: 6 Pages: 064603-064603

    • DOI

      10.1103/physrevfluids.4.064603

    • Related Report
      2019 Annual Research Report
    • Peer Reviewed
  • [Journal Article] Topology optimization of electrolyte-electrode interfaces of solid oxide fuel cells using the adjoint method2019

    • Author(s)
      Onishi, J., Kametani, Y., Hasegawa, Y., Shikazono, N.
    • Journal Title

      Journal of The Electrochemical Society

      Volume: 166 Issue: 13 Pages: F876-F888

    • DOI

      10.1149/2.0031913jes

    • Related Report
      2019 Annual Research Report
    • Peer Reviewed / Open Access / Int'l Joint Research
  • [Journal Article] 機械学習を用いた円柱周り流れのレイノルズ数依存性の予測2019

    • Author(s)
      長谷川 一登,村田 高彬,深見 開,深潟 康二
    • Journal Title

      ながれ

      Volume: 38 Pages: 81-84

    • Related Report
      2019 Annual Research Report
    • Open Access
  • [Journal Article] 壁乱流制御の効率的最適化に向けた機械学習の応用2019

    • Author(s)
      光石 暁彦,志村 敬彬,岩本 薫
    • Journal Title

      ながれ

      Volume: 38 Pages: 329-336

    • Related Report
      2019 Annual Research Report
  • [Journal Article] 2次元流れ場への機械学習超解像の応用2019

    • Author(s)
      深見 開,深潟 康二,平 邦彦
    • Journal Title

      ながれ

      Volume: 38 Pages: 395-398

    • Related Report
      2019 Annual Research Report
    • Open Access / Int'l Joint Research
  • [Journal Article] 毛細血管網の分岐形態が微小循環の輸送特性に与える影響2019

    • Author(s)
      亀谷 幸憲,Fatemeh Mirzapourshafiyi,中山 雅敬,長谷川 洋介
    • Journal Title

      ながれ

      Volume: 38 Pages: 411-414

    • Related Report
      2019 Annual Research Report
    • Open Access / Int'l Joint Research
  • [Journal Article] Reconsideration of spanwise rotating turbulent channel flows via resolvent analysis2019

    • Author(s)
      Satoshi Nakashima, Mitul Luhar, and Koji Fukagata
    • Journal Title

      Journal of Fluid Mechanics

      Volume: 861 Pages: 200-222

    • DOI

      10.1017/jfm.2018.894

    • Related Report
      2018 Annual Research Report
    • Peer Reviewed / Int'l Joint Research
  • [Journal Article] Proposal of control laws for turbulent skin-friction reduction based on resolvent analysis2019

    • Author(s)
      Aika Kawagoe, Satoshi Nakashima, Mitul Luhar, and Koji Fukagata
    • Journal Title

      Journal of Fluid Mechanics

      Volume: 866 Pages: 810-840

    • DOI

      10.1017/jfm.2019.157

    • Related Report
      2018 Annual Research Report
    • Peer Reviewed / Int'l Joint Research
  • [Journal Article] 機械学習を用いた乱流の特徴抽出手法の構築に向けて2018

    • Author(s)
      深潟 康二,山本 誠,岩本 薫,長谷川 洋介,塚原 隆裕,福島 直哉,守 裕也,青木 義満
    • Journal Title

      ながれ

      Volume: 37 Pages: 524-527

    • Related Report
      2018 Annual Research Report
    • Open Access
  • [Journal Article] Development of Numerical Simulation on Soot Deposition Phenomenon on EGR Coolers by Euler-Lagrange Coupling2018

    • Author(s)
      原 潤一郎, 岩崎 充, 松平 範光, 三宅 啓史, 山本 誠, 福島 直哉, 守 裕也
    • Journal Title

      Transactions of Society of Automotive Engineers of Japan

      Volume: 49 Issue: 5 Pages: 1032-1037

    • DOI

      10.11351/jsaeronbun.49.1032

    • NAID

      130007486184

    • ISSN
      0287-8321, 1883-0811
    • Related Report
      2018 Annual Research Report
    • Peer Reviewed
  • [Journal Article] Numerical simulation of solidification phenomena of single molten droplet on flat plate using E-MPS method2018

    • Author(s)
      Shinichiro Kondo, Hiroya Mamori, Naoya Fukushima, Koji Fukudome, and Makoto Yamamoto
    • Journal Title

      Journal of Fluid Science and Technology

      Volume: 13 Issue: 3 Pages: JFST0013-JFST0013

    • DOI

      10.1299/jfst.2018jfst0013

    • NAID

      130007496668

    • ISSN
      1880-5558
    • Related Report
      2018 Annual Research Report
    • Peer Reviewed
  • [Journal Article] Identification of acoustic wave propagation pattern of a supersonic jet using frequency-domain POD2018

    • Author(s)
      Yuta Ozawa, Taku Nonomura, Masayuki Anyoji, Hiroya Mamori, Naoya Fukushima, Akira Oyama, Kozo Fujii, and Makoto Yamamoto
    • Journal Title

      Transactions of the Japan Society for Aeronautical and Space Sciences

      Volume: 61 Issue: 6 Pages: 281-284

    • DOI

      10.2322/tjsass.61.281

    • NAID

      130007504918

    • Related Report
      2018 Annual Research Report
    • Peer Reviewed
  • [Journal Article] Predicting turbulent spectra in drag-reduced flows2018

    • Author(s)
      Davide Gatti, Alexander Stroh, Bettina Frohnapfel, Yosuke Hasegawa
    • Journal Title

      Flow Turbulence and Combustion

      Volume: 100 Issue: 4 Pages: 1081-1099

    • DOI

      10.1007/s10494-018-9920-8

    • Related Report
      2018 Annual Research Report
    • Peer Reviewed / Int'l Joint Research
  • [Journal Article] Global energy fluxes in fully-developed turbulent channels with flow control2018

    • Author(s)
      Davide Gatti, Andrea Cimarelli, Yosuke Hasegawa, Bettina Frohnapfel, Maurizio Quadrio
    • Journal Title

      Journal of Fluid Mechanics

      Volume: 857 Pages: 345-373

    • DOI

      10.1017/jfm.2018.749

    • Related Report
      2018 Annual Research Report
    • Peer Reviewed / Int'l Joint Research
  • [Journal Article] Numerical and experimental analyses of three-dimensional unsteady flow around a micro-pillar subjected to rotational vibration2018

    • Author(s)
      Kanji Kaneko, Takayuki Osawa, Yukinori Kametani, Ken Hayakawa, Yosuke Hasegawa, Hiroaki Suzuki
    • Journal Title

      Micromachine

      Volume: 9 Issue: 12 Pages: 668-668

    • DOI

      10.3390/mi9120668

    • Related Report
      2018 Annual Research Report
    • Peer Reviewed / Open Access
  • [Presentation] Low-dimensionalized flow representation with customized autoencoders2021

    • Author(s)
      K. Fukami, T. Murata, K. Fukagata
    • Organizer
      14th World Congress on Computational Mechanics (WCCM 2020)
    • Related Report
      2020 Annual Research Report
    • Int'l Joint Research
  • [Presentation] The use of convolutional neural networks for PIV data augmentation2021

    • Author(s)
      M. Morimoto, K. Fukami, H. Murakami, K. Fukagata
    • Organizer
      14th World Congress on Computational Mechanics (WCCM 2020)
    • Related Report
      2020 Annual Research Report
    • Int'l Joint Research
  • [Presentation] Applications of convolutional neural networks to fluid mechanics problems2021

    • Author(s)
      K. Fukagata
    • Organizer
      International Workshop on Machine Learning for Soft Matter 2021
    • Related Report
      2020 Annual Research Report
    • Int'l Joint Research / Invited
  • [Presentation] Autoencoder based extraction of low-dimensional manifolds in fluid flows2021

    • Author(s)
      M. Morimoto, K. Fukami, K. Hasegawa, T. Nakamura, K. Fukagata
    • Organizer
      2021 SIAM Conference on Computational Science and Engineering
    • Related Report
      2020 Annual Research Report
    • Int'l Joint Research
  • [Presentation] Convolutional neural network based fluid data enrichment for numerical and experimental studies2021

    • Author(s)
      K. Fukami, K. Taira, M. Morimoto, K. Fukagata
    • Organizer
      2021 SIAM Conference on Computational Science and Engineering
    • Related Report
      2020 Annual Research Report
    • Int'l Joint Research
  • [Presentation] Toward practical global field reconstruction from sparse sensors with deep learning2021

    • Author(s)
      K. Fukami, R. Maulik, N. Ramachandra, K. Fukagata, K. Taira
    • Organizer
      DataLearning Working Group Seminar, Imperial College London
    • Related Report
      2020 Annual Research Report
    • Int'l Joint Research / Invited
  • [Presentation] Utilization of autoencoder-based nonlinear manifolds for fluid flow forecasts driven with long short-term memory2021

    • Author(s)
      T. Nakamura, K. Fukami, K. Hasegawa, Y. Nabae, K. Fukagata
    • Organizer
      DataLearning Working Group Seminar, Imperial College London
    • Related Report
      2020 Annual Research Report
    • Int'l Joint Research / Invited
  • [Presentation] 流体力学への機械学習の応用2021

    • Author(s)
      深潟 康二
    • Organizer
      日本機械学会流体工学部門講習会「流体とインフォマティクス」
    • Related Report
      2020 Annual Research Report
    • Invited
  • [Presentation] 機械学習を用いた乱流の状態推定:入力ノイズに対するロバスト性2021

    • Author(s)
      中村 太一,深見 開,深潟 康二
    • Organizer
      日本機械学会関東支部第27期総会・講演会
    • Related Report
      2020 Annual Research Report
  • [Presentation] 非線形ダイナミカルシステムに対するニューラルネットワークを用いた異常検知2021

    • Author(s)
      森本 将生,深見 開,中村 太一,深潟 康二
    • Organizer
      日本機械学会関東支部第27期総会・講演会
    • Related Report
      2020 Annual Research Report
  • [Presentation] 適応サンプリングと組み合わせた畳み込みニューラルネットワークに基づく二次元データからの三次元データの再構築2021

    • Author(s)
      松尾 光昭,森本 将生,中村 太一,深見 開,深潟 康二
    • Organizer
      日本機械学会関東学生会第60回学生員卒業研究発表講演会
    • Related Report
      2020 Annual Research Report
  • [Presentation] チャネル乱流LES に対する教師あり機械学習ベースのデータ駆動型壁モデリング2021

    • Author(s)
      守矢 直樹,深見 開,難波江 佑介,中村 太一,森本 将生,深潟 康二
    • Organizer
      日本機械学会関東学生会第60回学生員卒業研究発表講演会
    • Related Report
      2020 Annual Research Report
  • [Presentation] オートエンコーダとSINDy を用いた非定常流れにおけるフィードバック制御2021

    • Author(s)
      兼平 昇英,深見 開,長谷川 一登,中村 太一,森本 将生,深潟 康二
    • Organizer
      日本機械学会関東学生会第60回学生員卒業研究発表講演会
    • Related Report
      2020 Annual Research Report
  • [Presentation] Anti-icing Simulation with Electric Heater for NACA 0012 Airfoil2021

    • Author(s)
      K. Fukudome, S. Uranai, H. Mamori, M. Yamamoto
    • Organizer
      AEROTECH Digital Summit
    • Related Report
      2020 Annual Research Report
    • Int'l Joint Research
  • [Presentation] Estimation of Turbulent Flow from Wall Information via Machine Learning2021

    • Author(s)
      Y, Shimoda, T. Matsumori, K. Sato, T. Hirano, N. Fukushima
    • Organizer
      The International Conference on Computational & Experimental Engineering and Sciences 2020/2021
    • Related Report
      2020 Annual Research Report
    • Int'l Joint Research
  • [Presentation] Unstructured fluid flow data recovery using machine learning and Voronoi diagrams2020

    • Author(s)
      K. Fukami, R. Maulik, N. Ramachandra, K. Taira, K. Fukagata
    • Organizer
      73rd Annual Meeting of the APS Division of Fluid Dynamics (APS DFD 2020)
    • Related Report
      2020 Annual Research Report
    • Int'l Joint Research
  • [Presentation] Visualization of internal procedure in neural networks for fluid flows2020

    • Author(s)
      M. Morimoto, K. Fukami, K. Fukagata
    • Organizer
      73rd Annual Meeting of the APS Division of Fluid Dynamics (APS DFD 2020)
    • Related Report
      2020 Annual Research Report
    • Int'l Joint Research
  • [Presentation] Convolutional neural network based wall modeling for large eddy simulation in a turbulent channel flow2020

    • Author(s)
      N. Moriya, K. Fukami, Y. Nabae, M. Morimoto, T. Nakamura, K. Fukagata
    • Organizer
      73rd Annual Meeting of the APS Division of Fluid Dynamics (APS DFD 2020)
    • Related Report
      2020 Annual Research Report
    • Int'l Joint Research
  • [Presentation] CNN-AE/LSTM based turbulent flow forecast on low-dimensional latent space2020

    • Author(s)
      T. Nakamura, K. Fukami, K. Hasegawa, Y. Nabae, K. Fukagata
    • Organizer
      Thirty-fourth Conference on Neural Information Processing Systems (NeurIPS 2020)
    • Related Report
      2020 Annual Research Report
    • Int'l Joint Research
  • [Presentation] Probabilistic neural network-based reduced order surrogate for fluid flows2020

    • Author(s)
      K. Fukami, R. Maulik, N. Ramachandra, K. Fukagata, K. Taira
    • Organizer
      Thirty-fourth Conference on Neural Information Processing Systems (NeurIPS 2020)
    • Related Report
      2020 Annual Research Report
    • Int'l Joint Research
  • [Presentation] 機械学習技術の流体力学への応用と課題2020

    • Author(s)
      深潟 康二
    • Organizer
      JST-CRDS「複雑な流れ現象の解明と統合的制御」セミナー 第3回
    • Related Report
      2020 Annual Research Report
    • Invited
  • [Presentation] 大規模構造に対するOpposition control のレゾルベント解析2020

    • Author(s)
      植草 理子,Mitul Luhar,深潟 康二
    • Organizer
      日本機械学会2020年度年次大会
    • Related Report
      2020 Annual Research Report
  • [Presentation] 様々な流れ場に対するオートエンコーダを用いた低次元化の調査2020

    • Author(s)
      森本 将生,深見 開,長谷川 一登,中村 太一,深潟 康二
    • Organizer
      日本流体力学会年会2020
    • Related Report
      2020 Annual Research Report
  • [Presentation] 階層型CNNオートエンコーダを用いた流れ場の非線形モードの抽出2020

    • Author(s)
      中村 太一,深見 開,深潟 康二
    • Organizer
      日本流体力学会年会2020
    • Related Report
      2020 Annual Research Report
  • [Presentation] 乱流×機械学習2020

    • Author(s)
      深潟 康二
    • Organizer
      日本機械学会熱工学部門・流体工学部門・計算力学部門合同講習会「機械学習×熱・流体工学の最先端」
    • Related Report
      2020 Annual Research Report
    • Invited
  • [Presentation] 畳み込みニューラルネットワークの流体解析への応用2020

    • Author(s)
      深潟 康二
    • Organizer
      アドバンスソフト「機械学習と流体シミュレーションセミナー」
    • Related Report
      2020 Annual Research Report 2019 Annual Research Report
    • Invited
  • [Presentation] 畳み込みニューラルネットワークの流体力学への応用2020

    • Author(s)
      深潟 康二
    • Organizer
      日本機械学会東海支部講習会「基礎科目に立脚し最新の工学技術を学ぶ講習会」
    • Related Report
      2020 Annual Research Report
    • Invited
  • [Presentation] 解釈・汎化可能性の観点から見る流体問題への実用的な機械学習に向けて2020

    • Author(s)
      森本 将生,深見 開,張 凱,深潟 康二
    • Organizer
      第34回数値流体力学シンポジウム
    • Related Report
      2020 Annual Research Report
  • [Presentation] 機械学習を用いた2 次元データから3 次元流れ場の再構築2020

    • Author(s)
      松尾 光昭,森本 将生,中村 太一,深見 開,深潟 康二
    • Organizer
      第34回数値流体力学シンポジウム
    • Related Report
      2020 Annual Research Report
  • [Presentation] 機械学習を用いたチャネル乱流における状態推定とそのセンサ情報ロバスト性2020

    • Author(s)
      中村 太一,深見 開,深潟 康二
    • Organizer
      第34回数値流体力学シンポジウム
    • Related Report
      2020 Annual Research Report
  • [Presentation] チャネル乱流LESの壁モデル構築のための教師付き機械学習2020

    • Author(s)
      守矢 直樹,深見 開,難波江 佑介,森本 将生,中村 太一,深潟 康二
    • Organizer
      第34回数値流体力学シンポジウム
    • Related Report
      2020 Annual Research Report
  • [Presentation] Mechanism of dissimilar heat transfer enhancement in a laminar channel flow subjected to wall blowing and suctioninduced by traveling wave-like wall blowing suction2020

    • Author(s)
      A. J. Kithakkal, Y. Kametani, Y. Hasegawa
    • Organizer
      8th International and 47th National Conference On Fluid Mechanics and Fluid Power (FMFP)
    • Related Report
      2020 Annual Research Report
    • Int'l Joint Research
  • [Presentation] Optimal control of wall turbulence for dissimilar heat and momentum transport2020

    • Author(s)
      Y. Hasegawa
    • Organizer
      8th International and 47th National Conference On Fluid Mechanics and Fluid Power (FMFP)
    • Related Report
      2020 Annual Research Report
    • Int'l Joint Research / Invited
  • [Presentation] チャネル乱流における非相似伝熱促進のための壁吹き出し・吸い込みの最適進行波モード2020

    • Author(s)
      A. J. Kaithakkal, 亀谷 幸憲,長谷川洋介
    • Organizer
      日本流体力学会年会2020
    • Related Report
      2020 Annual Research Report
  • [Presentation] 複数の面計測情報を用いたチャネル乱流場の状態推定2020

    • Author(s)
      Z. Liu, 鈴木崇夫,長谷川 洋介
    • Organizer
      日本流体力学会年会2020
    • Related Report
      2020 Annual Research Report
  • [Presentation] 大きな空間スケールを有する壁面吹出し・吸込みによる壁乱流の最適制御2020

    • Author(s)
      伊藤 宗嵩,長谷川 洋介
    • Organizer
      日本流体力学会年会2020
    • Related Report
      2020 Annual Research Report
  • [Presentation] 壁乱流フィードバック制御則のための最適制御入力の学習2020

    • Author(s)
      宇治 孝節,伊藤 宗嵩,長谷川 洋介
    • Organizer
      日本流体力学会年会2020
    • Related Report
      2020 Annual Research Report
  • [Presentation] 物理法則を考慮した深層学習を用いた限られた計測データに基づくスカラー源、および それに起因するスカラー濃度場の推定2020

    • Author(s)
      D. Henzel, Z. Liu, G. E. Karniadakis, Y. Hasegawa
    • Organizer
      日本流体力学会年会2020
    • Related Report
      2020 Annual Research Report
  • [Presentation] 4次元変分法を用いた面計測データに基づくダクト内円柱周りの流れ場推定2020

    • Author(s)
      細矢 太一, 亀谷 幸憲, 大澤 崇行, 塚原 隆裕, 長谷川 洋介
    • Organizer
      第34回数値流体力学シンポジウム
    • Related Report
      2020 Annual Research Report
  • [Presentation] Turbulent friction drag reduction: From feedback to predetermined, and feedback again2019

    • Author(s)
      Koji Fukagata
    • Organizer
      5th Symposium on Fluid-Structure-Sound Interactions and Control (FSSIC2019)
    • Related Report
      2019 Annual Research Report
    • Invited
  • [Presentation] Flow control and machine learning studies at Keio Fukagata Lab2019

    • Author(s)
      Koji Fukagata
    • Organizer
      Mechanical and Aerospace Engineering Department Seminars, Thermo Fluids Series, UCLA
    • Related Report
      2019 Annual Research Report
    • Invited
  • [Presentation] 乱流シミュレーションの基礎(+乱流制御,機械学習)2019

    • Author(s)
      深潟 康二
    • Organizer
      COMSOL Days 流体セミナー
    • Related Report
      2019 Annual Research Report
    • Invited
  • [Presentation] 乱流および非定常層流の機械学習2019

    • Author(s)
      深潟 康二
    • Organizer
      大阪大学 数理・データ科学セミナー 数理モデルセミナーシリーズ 第21回
    • Related Report
      2019 Annual Research Report
    • Invited
  • [Presentation] 乱流解析への機械学習の応用2019

    • Author(s)
      深潟 康二
    • Organizer
      第65回理論応用力学講演会・第22回土木学会応用力学シンポジウム
    • Related Report
      2019 Annual Research Report
    • Invited
  • [Presentation] 畳み込みニューラルネットワークを用いた流れ場の回帰2019

    • Author(s)
      深潟 康二
    • Organizer
      第47回可視化情報シンポジウム
    • Related Report
      2019 Annual Research Report
    • Invited
  • [Presentation] 乱流の制御と機械学習2019

    • Author(s)
      深潟 康二
    • Organizer
      流体若手夏の学校2019
    • Related Report
      2019 Annual Research Report
    • Invited
  • [Presentation] 乱流の機械学習における最近の動向2019

    • Author(s)
      深潟 康二
    • Organizer
      日本流体力学会年会2019
    • Related Report
      2019 Annual Research Report
    • Invited
  • [Presentation] 乱流の機械学習と制御2019

    • Author(s)
      深潟 康二
    • Organizer
      第3回CAEワークショップ
    • Related Report
      2019 Annual Research Report
    • Invited
  • [Presentation] 機械学習技術の流体解析への応用2019

    • Author(s)
      深潟 康二
    • Organizer
      自動車技術会第20回流体技術部門委員会
    • Related Report
      2019 Annual Research Report
    • Invited
  • [Presentation] Adjoint-based olfactory search algorithm in turbulent environments2019

    • Author(s)
      Yosuke Hasegawa
    • Organizer
      International Workshop on Data-driven Modeling and Optimization in Fluid Mechanics
    • Related Report
      2019 Annual Research Report
    • Int'l Joint Research
  • [Presentation] 乱流現象 vs 機械学習2019

    • Author(s)
      塚原 隆裕
    • Organizer
      Prometech Simulation Conference (PSC2019) & GPU Computing Workshop for Advanced Manufacturing (GPU2019)
    • Related Report
      2019 Annual Research Report
    • Invited
  • [Presentation] 乱流を機械学習:粘弾性流体乱流の代理モデルと乱流物質輸送の拡散源推定2019

    • Author(s)
      塚原 隆裕
    • Organizer
      ポスト「京」重点課題8・重点課題6 第3回HPCものづくり統合ワークショップ
    • Related Report
      2019 Annual Research Report
    • Invited
  • [Presentation] Image-based super-resolution analysis with machine learning for two-dimensional turbulence2019

    • Author(s)
      Kai Fukami, Koji Fukagata, Kunihiko Taira
    • Organizer
      The 13th Southern California Flow Physics Symposium (SoCal Fluids XIII)
    • Related Report
      2019 Annual Research Report
  • [Presentation] Data-driven reduced order modeling of flows around two-dimensional bluff bodies of various shapes2019

    • Author(s)
      Kazuto Hasegawa, Kai Fukami, Takaaki Murata, Koji Fukagata,
    • Organizer
      The ASME-JSME-KSME Joint Fluids Engineering Conference 2019
    • Related Report
      2019 Annual Research Report
    • Int'l Joint Research
  • [Presentation] CNN-SINDy based reduced order modeling of unsteady flow fields2019

    • Author(s)
      Takaaki Murata, Kai Fukami, Koji Fukagata
    • Organizer
      The ASME-JSME-KSME Joint Fluids Engineering Conference 2019
    • Related Report
      2019 Annual Research Report
    • Int'l Joint Research
  • [Presentation] Resolvent analysis of turbulent friction drag reduction by manipulation of mean velocity profile2019

    • Author(s)
      Riko Uekusa, Aika Kawagoe, Yusuke Nabae, Koji Fukagata
    • Organizer
      The ASME-JSME-KSME Joint Fluids Engineering Conference 2019
    • Related Report
      2019 Annual Research Report
    • Int'l Joint Research
  • [Presentation] Prediction of Drag Reduction Effect of Pulsating Control in Turbulent Pipe Flow by Machine Learning2019

    • Author(s)
      Wataru Kobayashi, Takaaki Shimura, Akihiko Mitsuishi, Kaoru Iwamoto, Akira Murata
    • Organizer
      The ASME-JSME-KSME Joint Fluids Engineering Conference 2019
    • Related Report
      2019 Annual Research Report
    • Int'l Joint Research
  • [Presentation] Predictability study of viscoelastic turbulent channel flow using deep learning2019

    • Author(s)
      Atsushi Nagamachi, Takahiro Tsukahara
    • Organizer
      The ASME-JSME-KSME Joint Fluids Engineering Conference 2019
    • Related Report
      2019 Annual Research Report
  • [Presentation] Super-resolution analysis with machine learning for low-resolution flow data2019

    • Author(s)
      Kai Fukami, Koji Fukagata, Kunihiko Taira
    • Organizer
      11th International Symposium on Turbulence and Shear Flow Phenomena (TSFP11)
    • Related Report
      2019 Annual Research Report
    • Int'l Joint Research
  • [Presentation] Influence of curvature on drag reduction by opposition control in turbulent flow along a thin cylinder2019

    • Author(s)
      Shota Hara, Hiroya Mamori, Takeshi Miyazaki
    • Organizer
      11th International Symposium on Turbulence and Shear Flow Phenomena (TSFP11)
    • Related Report
      2019 Annual Research Report
    • Int'l Joint Research
  • [Presentation] Adjoint-based shape optimization of heat transfer surfaces in turbulent flows with DNS-RANS hybrid approach2019

    • Author(s)
      Yukinori Kametani, Yosuke Hasegawa
    • Organizer
      The 7th Asian Symposium on Computational Heat Transfer and Fluid Flow 2019 (ASCHT2019)
    • Related Report
      2019 Annual Research Report
    • Int'l Joint Research
  • [Presentation] Numerical study on Hemodynamics of brain vasculature in eartly ebrafish life2019

    • Author(s)
      Minglang Yin, Xiaoning Zheng, Ansel Blumers, Mitsuho Nakakura, Hiroyuki Nakajima, Yosuke Hasegawa, Geroge Karniadakis
    • Organizer
      Biomedical Engineering Society 2019 (BMES2019)
    • Related Report
      2019 Annual Research Report
    • Int'l Joint Research
  • [Presentation] Space-time recovery of high-resolution turbulent flow fields with machine learning based super resolution2019

    • Author(s)
      Kai Fukami, Koji Fukagata, Kunihiko Taira
    • Organizer
      72nd Annual Meeting of the APS Division of Fluid Dynamics
    • Related Report
      2019 Annual Research Report
  • [Presentation] Comparison of Multi-scale Models for Blood Flow in Zebrafish Brain2019

    • Author(s)
      Minglang Yin, Xiaoning Zheng, Ansel Blumers, Mitsuho Nakakura, Hiroyuki Nakajima, Yosuke Hasegawa, Geroge Karniadakis
    • Organizer
      72nd Annual Meeting of the APS Division of Fluid Dynamics
    • Related Report
      2019 Annual Research Report
  • [Presentation] Quantitative contribution of laminar, turbulence and secondary flow to velocity and temperature in rhombic ducts2019

    • Author(s)
      Naoya Fukushima
    • Organizer
      72nd Annual Meeting of the APS Division of Fluid Dynamics
    • Related Report
      2019 Annual Research Report
  • [Presentation] Suppression of vortex shedding in flow around a square cylinder by suboptimal control2019

    • Author(s)
      Yusuke Nabae, Yosuke Fujita, Koji Fukagata
    • Organizer
      The 2nd Pacific Rim Thermal Engineering Conference (PRTEC2019)
    • Related Report
      2019 Annual Research Report
    • Int'l Joint Research
  • [Presentation] Resolvent analysis for dissimilar control in turbulent channel flow2019

    • Author(s)
      Riko Uekusa, Aika Kawagoe, Yusuke Nabae, Koji Fukagata
    • Organizer
      The 2nd Pacific Rim Thermal Engineering Conference (PRTEC2019)
    • Related Report
      2019 Annual Research Report
    • Int'l Joint Research
  • [Presentation] A machine-learned turbulence generator for the channel flow2019

    • Author(s)
      Kai Fukami, Yusuke Nabae, Ken Kawai, Koji Fukagata
    • Organizer
      The 2nd Pacific Rim Thermal Engineering Conference (PRTEC2019)
    • Related Report
      2019 Annual Research Report
    • Int'l Joint Research
  • [Presentation] Adjoint-based optimization of heat transfer surface in latent heat thermal storage system2019

    • Author(s)
      Yukinori Kametani, Takumi Yuasa, Kei Matsumoto, Takahiro Shoda, Makoto Ishii, Yosuke Hasegawa
    • Organizer
      The 2nd Pacific Rim Thermal Engineering Conference (PRTEC2019)
    • Related Report
      2019 Annual Research Report
    • Int'l Joint Research
  • [Presentation] Experimental study on evaporation process and particle sedimentation in pendant droplets2019

    • Author(s)
      Shun Tamura, Hanzhi Wang, Takahiro Tsukahara, Takayuki Osawa, Yosuke Hasegawa
    • Organizer
      The 2nd Pacific Rim Thermal Engineering Conference (PRTEC2019)
    • Related Report
      2019 Annual Research Report
    • Int'l Joint Research
  • [Presentation] Optimal large-scale control input for drag redcuction in turbulent channel flow2019

    • Author(s)
      Toshitaka Itoh, Yosuke Hasegawa
    • Organizer
      The 2nd Pacific Rim Thermal Engineering Conference (PRTEC2019)
    • Related Report
      2019 Annual Research Report
    • Int'l Joint Research
  • [Presentation] Turbulent flow estimation based on wall measurements by using machine learning techniques2019

    • Author(s)
      Zhuchen Liu, Yosuke Hasegawa
    • Organizer
      The 2nd Pacific Rim Thermal Engineering Conference (PRTEC2019)
    • Related Report
      2019 Annual Research Report
    • Int'l Joint Research
  • [Presentation] Decomposition of Friction Drag and Heat Transfer in Pulsating Turbulent Pipe Flow2019

    • Author(s)
      Ryohei Yamaguchi, Akihiko Mitsuishi, Takaaki Shimura, Kaoru Iwamoto, Akira Murata
    • Organizer
      The 2nd Pacific Rim Thermal Engineering Conference (PRTEC2019)
    • Related Report
      2019 Annual Research Report
    • Int'l Joint Research
  • [Presentation] Influence of phase difference of spanwise wall oscillation for turbulent channel flow2019

    • Author(s)
      Tomonari Harada, Koji Fukudome, Hiroya Mamori, Makoto Yamamoto
    • Organizer
      Asian Pacific Congress on Computational Mechanics 2019 (APCOM2019)
    • Related Report
      2019 Annual Research Report
  • [Presentation] Prediction of turbulent flows from wall information with deep learning2019

    • Author(s)
      Kohei Ando, Tatsuro Hirano, Yoshihiko Yamashita, Sota Nishio, Naoya Fukushima
    • Organizer
      The Asian Pacific Congress on Computational Mechanics (APCOM2019)
    • Related Report
      2019 Annual Research Report
    • Int'l Joint Research
  • [Presentation] 多層パーセプトロンによる粘弾性流体乱流計算に向けた代理モデルの構築2019

    • Author(s)
      塚原 隆裕,長町 厚志
    • Organizer
      第65回理論応用力学講演会・第22回土木学会応用力学シンポジウム
    • Related Report
      2019 Annual Research Report
  • [Presentation] 2次元流れへの機械学習超解像の応用2019

    • Author(s)
      深見 開,深潟 康二,平 邦彦
    • Organizer
      日本流体力学会年会2019
    • Related Report
      2019 Annual Research Report
  • [Presentation] 円管内脈動乱流の実験データを用いた機械学習による抵抗低減効果の予測2019

    • Author(s)
      小林,志村,光石,岩本,村田
    • Organizer
      流体力学会年会2019
    • Related Report
      2019 Annual Research Report
  • [Presentation] 3次元チャネル乱流における機械学習超解像解析2019

    • Author(s)
      深見 開,深潟 康二,平 邦彦
    • Organizer
      日本機械学会第97期流体工学部門講演会
    • Related Report
      2019 Annual Research Report
  • [Presentation] 深層学習による円管内脈動乱流の摩擦抵抗予測2019

    • Author(s)
      山口 僚平,光石 暁彦,志村 敬彬,岩本 薫,村田 章
    • Organizer
      日本機械学会第97期流体工学部門講演会
    • Related Report
      2019 Annual Research Report
  • [Presentation] 円筒に沿った乱流における対抗制御を用いた抵抗低減の直接数値計算2019

    • Author(s)
      原 将太,守 裕也,宮嵜 武
    • Organizer
      日本機械学会第97期流体工学部門講演会
    • Related Report
      2019 Annual Research Report
  • [Presentation] 機械学習に基づくデータ拡張によるPIVの精度向上2019

    • Author(s)
      森本 将生,深見 開,長谷川 一登,村田 高彬,村上 光,深潟 康二
    • Organizer
      第33回数値流体力学シンポジウム
    • Related Report
      2019 Annual Research Report
  • [Presentation] オートエンコーダを用いたチャネル乱流の機械学習2019

    • Author(s)
      中村 太一,深見 開,長谷川 一登,村田 高彬,難波江 佑介,深潟 康二
    • Organizer
      第33回数値流体力学シンポジウム
    • Related Report
      2019 Annual Research Report
  • [Presentation] 平行平板間乱流におけるスパン方向壁面振動制御の壁間位相差が抵抗低減効果に与える影響2019

    • Author(s)
      原田 友成,福留 功二,守 裕也,山本 誠
    • Organizer
      第33回数値流体力学シンポジウム
    • Related Report
      2019 Annual Research Report
  • [Presentation] 深層学習による粘弾性流体チャネル乱流の代理モデル構築2019

    • Author(s)
      長町 厚志,塚原 隆裕
    • Organizer
      第33回数値流体力学シンポジウム
    • Related Report
      2019 Annual Research Report
  • [Presentation] 機械学習の流体力学への応用2019

    • Author(s)
      深潟 康二
    • Organizer
      日本学術会議 公開シンポジウム「第4回理論応用力学シンポジウム」- 力学と新学術の融合 -
    • Related Report
      2018 Annual Research Report
    • Invited
  • [Presentation] 非定常層流および乱流への機械学習の応用2019

    • Author(s)
      深潟 康二
    • Organizer
      第22回若手科学者によるプラズマ研究会
    • Related Report
      2018 Annual Research Report
    • Invited
  • [Presentation] 壁乱流の摩擦抵抗低減・伝熱増進を目的とした生物規範型制御に関する直接数値シミュレーション2019

    • Author(s)
      岩本 薫
    • Organizer
      日本伝熱学会 関東支部セミナー「分野外の技術者にもわかる伝熱工学-最新の数値解析と実験計測の研究事例-」
    • Related Report
      2018 Annual Research Report
    • Invited
  • [Presentation] 機械学習に基づく縮約モデルを用いた非定常流れの予測2019

    • Author(s)
      長谷川 一登,深見 開,村田 高彬, 深潟 康二
    • Organizer
      日本機械学会関東学生会第58回学生員卒業研究発表講演会
    • Related Report
      2018 Annual Research Report
  • [Presentation] 平均流速分布の操作による乱流摩擦抵抗低減のレゾルベント解析2019

    • Author(s)
      植草 理子,川越 愛夏,深潟 康二
    • Organizer
      日本機械学会関東学生会第58回学生員卒業研究発表講演会
    • Related Report
      2018 Annual Research Report
  • [Presentation] A pumpless mixer for efficient captureing of samll particles utlizing vibration-induced flow2019

    • Author(s)
      Kanji Kaneko,Taiji Okano, Takeshi Hayakawa, Yosuke Hasegawa, and Hiroaki Suzuki
    • Organizer
      The 32nd International Conference on Micro Electro Mechanical Systems (MEMS 2019)
    • Related Report
      2018 Annual Research Report
    • Int'l Joint Research
  • [Presentation] Adjoint-based shape optimization for complex heat transfer surfaces in turbulent flows2019

    • Author(s)
      Yukinori Kametani, Yosuke Hasegawa
    • Organizer
      European Drag Reduction and Flow Control Meeting (EDRFCM2019)
    • Related Report
      2018 Annual Research Report
    • Int'l Joint Research
  • [Presentation] Dissimilar response of the streamwise velocity and temperature field under traveling wave-like wall blowing and suction2019

    • Author(s)
      Arjun J. Kaithakkal, Yukinori Kametani, Yosuke Hasegawa
    • Organizer
      European Drag Reduction and Flow Control Meeting (EDRFCM2019)
    • Related Report
      2018 Annual Research Report
    • Int'l Joint Research
  • [Presentation] 機械学習を用いた乱流の特徴抽出手法の構築に向けて2018

    • Author(s)
      深潟 康二,山本 誠,岩本 薫,長谷川 洋介,塚原 隆裕,福島 直哉,守 裕也,青木 義満
    • Organizer
      日本流体力学会年会2018
    • Related Report
      2018 Annual Research Report
    • Invited
  • [Presentation] 乱流×機械学習=?2018

    • Author(s)
      深潟 康二
    • Organizer
      Prometech Simulation Conference 2018 (PSC 2018)
    • Related Report
      2018 Annual Research Report
    • Invited
  • [Presentation] CNN-LSTMを用いた非定常流れの機械学習2018

    • Author(s)
      深潟 康二
    • Organizer
      日本機械学会2018年度第4回RC277分科会
    • Related Report
      2018 Annual Research Report
    • Invited
  • [Presentation] 壁乱流の摩擦抵抗低減・伝熱増進を目的とした生物規範型制御2018

    • Author(s)
      岩本 薫
    • Organizer
      日本機械学会関西支部 第19回秋季技術交流フォーラム
    • Related Report
      2018 Annual Research Report
    • Invited
  • [Presentation] 深層学習による円管内乱流の脈動制御のための渦構造予測モデル2018

    • Author(s)
      山口 僚平,光石 暁彦,志村 敬彬,岩本 薫,村田 章
    • Organizer
      日本機械学会 第96期 流体工学部門講演会
    • Related Report
      2018 Annual Research Report
    • Invited
  • [Presentation] CNNの画像認識を用いた乱流物質拡散源推定2018

    • Author(s)
      塚原 隆裕,平石 智裕,川口 靖夫
    • Organizer
      日本流体力学会年会2018
    • Related Report
      2018 Annual Research Report
    • Invited
  • [Presentation] Multi-physics CFD simulation with a hybrid grid- and particle-based method2018

    • Author(s)
      Makoto Yamamoto
    • Organizer
      Advances in Computational Flow-Structure Interaction and Flow Simulation (AFSI2018)
    • Related Report
      2018 Annual Research Report
    • Int'l Joint Research / Invited
  • [Presentation] Advanced multi-physics CFD simulations for engineering problems2018

    • Author(s)
      Makoto Yamamoto
    • Organizer
      13th World Congress on Computational Mechanics (WCCM XIII)
    • Related Report
      2018 Annual Research Report
    • Int'l Joint Research / Invited
  • [Presentation] 機械学習を用いた円柱周り流れのレイノルズ数依存性の予測2018

    • Author(s)
      長谷川 一登,深見 開,村田 高彬,深潟 康二
    • Organizer
      第32回数値流体力学シンポジウム
    • Related Report
      2018 Annual Research Report
  • [Presentation] 機械学習を用いた円柱周り流れにおける低次元モードの抽出と時間発展予測2018

    • Author(s)
      村田 高彬,深見 開,深潟 康二
    • Organizer
      第32回数値流体力学シンポジウム
    • Related Report
      2018 Annual Research Report
  • [Presentation] レゾルベント解析の示唆に基づく乱流摩擦抵抗低減手法の提案2018

    • Author(s)
      川越 愛夏,中島 聡,深潟 康二,Mitul Luhar
    • Organizer
      日本機械学会第96期流体工学部門講演会
    • Related Report
      2018 Annual Research Report
  • [Presentation] 超音速噴流騒音の周波数領域固有直交分解解析2018

    • Author(s)
      小澤 雄太,野々村 拓,安養寺 正之,大山 聖,藤井 孝藏,山本 誠
    • Organizer
      日本機械学会第38回流力騒音シンポジウム
    • Related Report
      2018 Annual Research Report
  • [Presentation] 深層学習を用いた円管内乱流の脈動波形と抵抗低減効果の相関に関する検証2018

    • Author(s)
      小林 渉,志村 敬彬,光石 暁彦,岩本 薫,村田 章
    • Organizer
      流体力学会年会2018
    • Related Report
      2018 Annual Research Report
  • [Presentation] 深層学習による粘弾性流体乱流の予測可能性に関する調査2018

    • Author(s)
      長町 厚志,塚原 隆裕
    • Organizer
      日本機械学会第31回計算力学講演会
    • Related Report
      2018 Annual Research Report
  • [Presentation] Spectral analysis of turbulent kinetic energy transport in controlled channel flow2018

    • Author(s)
      Aika Kawagoe, Satoshi Nakashima, Mitul Luhar, and Koji Fukagata
    • Organizer
      12th European Fluid Mechanics Conference (EFMC12)
    • Related Report
      2018 Annual Research Report
    • Int'l Joint Research
  • [Presentation] Reynolds number effect of drag reduction by traveling wave-like wall deformation in turbulent channel flow2018

    • Author(s)
      Yusuke Nabae, Ken Kawai, and Koji Fukagata
    • Organizer
      12th International ERCOFTAC Symposium on Engineering Turbulence Modelling and Measurements (ETMM12)
    • Related Report
      2018 Annual Research Report
    • Int'l Joint Research
  • [Presentation] Relaminarization of turbulent channel flow under stable density stratification2018

    • Author(s)
      Koji Fukudome, TakahiroTsukahara, Yoshifumi Ogami, and Makoto Yamamoto
    • Organizer
      12th Asian Computational Fluid Dynamics Conference (ACFD2018)
    • Related Report
      2018 Annual Research Report
    • Int'l Joint Research
  • [Presentation] Adjoint-based shape optimization for turbulent concvective heat transfer with a hybrid RANS-DNS approach2018

    • Author(s)
      Yukinori Kametani, Yosuke Hasegawa
    • Organizer
      16th International Heat Transfer Conerence (IHTC16)
    • Related Report
      2018 Annual Research Report
    • Int'l Joint Research
  • [Presentation] Optimal control of heat and fluid flow in a channel at low Reynolds numbers2018

    • Author(s)
      Arjun J. Kaithakkal, Yukinori Kametani, Yosuke Hasegawa
    • Organizer
      16th International Heat Transfer Conerence (IHTC16)
    • Related Report
      2018 Annual Research Report
    • Int'l Joint Research
  • [Presentation] Experimental assesment of heat transfer and pressure loss characteristics of optimzal heat transfer surfaces2018

    • Author(s)
      Yukinori Kametani, Yutaka Fukuda, Takayuki Osawa, Yosuke Hasegawa
    • Organizer
      12th European Fluid Mechanics Conference (EFMC12)
    • Related Report
      2018 Annual Research Report
    • Int'l Joint Research
  • [Presentation] Flow estimation behind a cylinder using data assimilation2018

    • Author(s)
      Yuki Akechi, Yuya Yamada, Takayuki Osawa, Takahiro Tsukahara, Yosuke Hasegawa
    • Organizer
      12th European Fluid Mechanics Conference (EFMC12)
    • Related Report
      2018 Annual Research Report
    • Int'l Joint Research
  • [Presentation] A numerical model for three-dimensional analysis of vibration-induced flow2018

    • Author(s)
      Kanji Kaneko, Takayuki Osawa, Yukinori Kametani, Yosuke Hasegawa, and Hiroaki Suzuki
    • Organizer
      The 22nd International Conference on Miniaturized Systems for Chemistry and Life Sciences (MicroTAS 2018)
    • Related Report
      2018 Annual Research Report
    • Int'l Joint Research
  • [Presentation] Turbulent dissipation in drag reduced flows2018

    • Author(s)
      Bettina Frohnapfel, Andrea Cimarelli, Yosuke Hasegawa, Maurizio Quadrio, Davide Gatti
    • Organizer
      90th Annual Meeting of the International Association of Applied Mathematics and Mechanics (GAMM2019)
    • Related Report
      2018 Annual Research Report
    • Int'l Joint Research
  • [Presentation] Influence of input parameters in deep learning on drag reduction by pulsating control in turbulent pipe Flow2018

    • Author(s)
      Wataru Kobayashi, Takaaki Shimura, Akihiko Mitsuishi, Kaoru Iwamoto, and Akira Murata
    • Organizer
      The 29th International Symposium on Transport Phenomena, Honolulu, Hawaii, USA
    • Related Report
      2018 Annual Research Report
    • Int'l Joint Research
  • [Presentation] Prediction of time evolution of vortex structure in pulsating turbulent pipe flow by deep learning2018

    • Author(s)
      Ryohei Yamaguchi, Akihiko Mitsuishi, Takaaki Shimura, Kaoru Iwamoto, and Akira Murata
    • Organizer
      The 29th International Symposium on Transport Phenomena, Honolulu, Hawaii, USA
    • Related Report
      2018 Annual Research Report
    • Int'l Joint Research
  • [Book] 流体機械2018

    • Author(s)
      山本 誠,太田 有,新関 良樹,宮川 和芳
    • Total Pages
      304
    • Publisher
      共立出版
    • ISBN
      4320082206
    • Related Report
      2018 Annual Research Report
  • [Book] 生物の優れた機能から着想を得た新しいものづくり(第5章「毛細血管リモデリングと流路ネットワーク最適化」分担執筆)2018

    • Author(s)
      長谷川 洋介,中山 雅敬
    • Publisher
      シーエムシー出版
    • ISBN
      9784781313542
    • Related Report
      2018 Annual Research Report
  • [Remarks] 慶應義塾大学・深潟研究室 機械学習のページ

    • URL

      https://kflab.jp/ja/index.php?18H03758

    • Related Report
      2020 Annual Research Report
  • [Remarks] Keio University - Fukagata Lab., ML Project

    • URL

      https://kflab.jp/en/index.php?18H03758

    • Related Report
      2020 Annual Research Report
  • [Remarks] 機械学習による乱流ビッグデータの特徴抽出手法の構築

    • URL

      http://kflab.jp/ja/index.php?18H03758

    • Related Report
      2019 Annual Research Report
  • [Remarks] Feature extraction for turbulence big data by ML

    • URL

      http://kflab.jp/en/index.php?18H03758

    • Related Report
      2019 Annual Research Report
  • [Remarks] 慶大・深潟研究室HP:科研費基盤A「機械学習による乱流ビックデータの特徴抽出手法の構築」

    • URL

      http://kflab.jp/ja/index.php?18H03758

    • Related Report
      2018 Annual Research Report

URL: 

Published: 2018-04-23   Modified: 2022-01-27  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi