Measuring the mechanics of cardiomyocyte beating with feedback control using MEMS sensors and actuators
Project/Area Number |
18H03759
|
Research Category |
Grant-in-Aid for Scientific Research (A)
|
Allocation Type | Single-year Grants |
Section | 一般 |
Review Section |
Medium-sized Section 20:Mechanical dynamics, robotics, and related fields
|
Research Institution | Toyama Prefectural University (2019-2021) The University of Tokyo (2018) |
Principal Investigator |
|
Project Period (FY) |
2018-04-01 – 2022-03-31
|
Project Status |
Completed (Fiscal Year 2021)
|
Budget Amount *help |
¥44,070,000 (Direct Cost: ¥33,900,000、Indirect Cost: ¥10,170,000)
Fiscal Year 2021: ¥8,190,000 (Direct Cost: ¥6,300,000、Indirect Cost: ¥1,890,000)
Fiscal Year 2020: ¥8,840,000 (Direct Cost: ¥6,800,000、Indirect Cost: ¥2,040,000)
Fiscal Year 2019: ¥10,270,000 (Direct Cost: ¥7,900,000、Indirect Cost: ¥2,370,000)
Fiscal Year 2018: ¥16,770,000 (Direct Cost: ¥12,900,000、Indirect Cost: ¥3,870,000)
|
Keywords | MEMSセンサ / iPS細胞由来心筋細胞 / 拍動力学 / 伸展刺激 / フィードバック制御 / 心筋細胞 / フィードバック |
Outline of Final Research Achievements |
We constructed a sensor system that can measure cell contraction using a MEMS force sensor and measured the beating of human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs). This sensor system is equipped with a function to stimulate cells to stretch, and the sensor signal can be used for feedback control of the amount of stretching. Experimental results showed that the greater the amount of cell extension, the stronger the beating force. This means that the Frank-Starling law is valid at the cellular level. Using feedback control, we were able to induce cardiomyocytes to undergo auxotonic and isometric contractions. We also observed that the beating cycle became longer at lower temperatures, and the beating stopped at around 20 degrees C. This is a property similar to that of many mammalian hearts.
|
Academic Significance and Societal Importance of the Research Achievements |
心臓の機能や状態を調べるために、臓器レベルでも細胞レベルでも電気化学的なアプローチが一般的である。しかし、心臓の機能がポンプという力学的機能である以上、容積や圧力(細胞レベルでは長さや収縮力)の時間的変化やその温度依存性などを直接調べることも重要である。本研究で構築したセンサシステムはそうした実測を可能とし、フランク・スターリング則が細胞レベルでも成り立つことや、20℃で心停止する現象が細胞由来であることを実証した。このセンサシステムと方法論は心筋細胞の力学的性質を直接計測することを可能とし、今後も心筋細胞の特性解明に貢献するものと期待される。
|
Report
(5 results)
Research Products
(9 results)