Dense charge storage using anomalous dielectric electric double layer
Project/Area Number |
18H03924
|
Research Category |
Grant-in-Aid for Scientific Research (A)
|
Allocation Type | Single-year Grants |
Section | 一般 |
Review Section |
Medium-sized Section 36:Inorganic materials chemistry, energy-related chemistry, and related fields
|
Research Institution | Waseda University (2021) The University of Tokyo |
Principal Investigator |
Okubo Masashi 早稲田大学, 理工学術院, 教授 (20453673)
|
Co-Investigator(Kenkyū-buntansha) |
大谷 実 国立研究開発法人産業技術総合研究所, 材料・化学領域, 研究チーム長 (50334040)
|
Project Period (FY) |
2018-04-01 – 2022-03-31
|
Project Status |
Completed (Fiscal Year 2021)
|
Budget Amount *help |
¥43,550,000 (Direct Cost: ¥33,500,000、Indirect Cost: ¥10,050,000)
Fiscal Year 2021: ¥9,620,000 (Direct Cost: ¥7,400,000、Indirect Cost: ¥2,220,000)
Fiscal Year 2020: ¥10,270,000 (Direct Cost: ¥7,900,000、Indirect Cost: ¥2,370,000)
Fiscal Year 2019: ¥10,660,000 (Direct Cost: ¥8,200,000、Indirect Cost: ¥2,460,000)
Fiscal Year 2018: ¥13,000,000 (Direct Cost: ¥10,000,000、Indirect Cost: ¥3,000,000)
|
Keywords | 蓄電デバイス / 電気化学キャパシタ / 層状化合物 / ナノシート / キャパシタ / 2次元化合物 / 原子層化合物 / 二次電池 / 電池 |
Outline of Final Research Achievements |
Sustainable development for low-carbon society needs electrochemical energy storage devices capable of efficient electricity supply. In this project, we studied charge storage in confined nanospace for the development of high energy density electrochemical supercapacitors. Combined assessment of experiments and computations found that ions and solvent molecules confined in nanospace possess anomalous dielectric response to the external electric field, which enables dense charge storage. Using this anomalous behavior, we successfully demonstrated high energy density charge storage in confined nanospace between transition-metal carbide nanosheets MXenes, which provides technological foundations to achieve electrochemical supercapacitors with higher energy density.
|
Academic Significance and Societal Importance of the Research Achievements |
持続可能な低炭素社会を構築するためには、必要な時に必要なだけの電気を供給できる蓄電デバイスが不可欠である。本研究では、層状の化合物において高密度に電荷を蓄える、すなわち、多くの電気を蓄えるための材料設計指針を見出し、実際、4倍近い電力エネルギーを蓄える電極システムの構築に成功した。この成果は、将来、軽量・小型・安価といった性能を兼ね備えた革新的な蓄電デバイスを生み出す可能性のある基盤技術である。
|
Report
(4 results)
Research Products
(16 results)