Project/Area Number |
18H04103
|
Research Category |
Grant-in-Aid for Scientific Research (A)
|
Allocation Type | Single-year Grants |
Section | 一般 |
Review Section |
Medium-sized Section 61:Human informatics and related fields
|
Research Institution | Tohoku University |
Principal Investigator |
|
Co-Investigator(Kenkyū-buntansha) |
片山 統裕 尚絅学院大学, 総合人間科学研究機構, 教授 (20282030)
高嶋 和毅 東北大学, 電気通信研究所, 准教授 (60533461)
藤田 和之 東北大学, 電気通信研究所, 助教 (70835545)
枦 修一郎 東北学院大学, 工学部, 教授 (90324285)
|
Project Period (FY) |
2018-04-01 – 2021-03-31
|
Project Status |
Completed (Fiscal Year 2021)
|
Budget Amount *help |
¥44,590,000 (Direct Cost: ¥34,300,000、Indirect Cost: ¥10,290,000)
Fiscal Year 2020: ¥12,870,000 (Direct Cost: ¥9,900,000、Indirect Cost: ¥2,970,000)
Fiscal Year 2019: ¥14,690,000 (Direct Cost: ¥11,300,000、Indirect Cost: ¥3,390,000)
Fiscal Year 2018: ¥17,030,000 (Direct Cost: ¥13,100,000、Indirect Cost: ¥3,930,000)
|
Keywords | バーチャルリアリティ / モーションキャプチャ / 3次元ユーザインタフェース |
Outline of Final Research Achievements |
Dexterous 3D motion data can be used for multiple purposes: biologists can use the data to record detailed movements of small animals in their living environments, scientists can track the flow of fluids, and researchers can track finger movements and objects being manipulated by users in virtual reality. We have captured dexterous 3D motion data from a flexible magnetic flux sensor array, using deep learning and a structure-aware temporal bilateral filter. We invented our new method by applying these ideas on a new magnetic tracking principle. First, the neural networks learn the regression from the simulation flux values to the LC coils 3D configuration at any location and orientation. The new filter further compensates the data to reconstruct smooth and accurate motion. Markers do not require batteries, so observation time can be maximized. As a result, the new integrated system can track multiple LC coils at 100Hz speed at millimeter level accuracy.
|
Academic Significance and Societal Importance of the Research Achievements |
これまで様々な原理に基づく3次元モーションセンサが提案されてきたが,いずれも原理上の制約から3次元の運動を計測できる対象に制限があり,利用できる分野は限定的だった.例えば,道具使用時の細かい手作業中の手指の運動や,土中や障害物の中で動き回わる小動物の運動,互いに複雑に絡み合う多関節物体の動き,流体の3次元的な動きなどを直接計測することはできなかった. 本研究より,これら従来は計測できなかった対象の3次元の動きを計測できる新しい磁気式モーションセンサシステムを実現することができた.これを用いて様々な分野への実応用や,重要な未踏問題の解決につなげることができる.
|