• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Development of cell diversity analysis method based on gene regulatory prediction by Bayesian network

Research Project

Project/Area Number 18H04124
Research Category

Grant-in-Aid for Scientific Research (A)

Allocation TypeSingle-year Grants
Section一般
Review Section Medium-sized Section 62:Applied informatics and related fields
Research InstitutionOsaka University

Principal Investigator

MATSUDA Hideo  大阪大学, 情報科学研究科, 教授 (50183950)

Co-Investigator(Kenkyū-buntansha) 瀬尾 茂人  大阪大学, 情報科学研究科, 准教授 (30432462)
Project Period (FY) 2018-04-01 – 2022-03-31
Project Status Completed (Fiscal Year 2021)
Budget Amount *help
¥35,360,000 (Direct Cost: ¥27,200,000、Indirect Cost: ¥8,160,000)
Fiscal Year 2021: ¥6,500,000 (Direct Cost: ¥5,000,000、Indirect Cost: ¥1,500,000)
Fiscal Year 2020: ¥8,710,000 (Direct Cost: ¥6,700,000、Indirect Cost: ¥2,010,000)
Fiscal Year 2019: ¥9,880,000 (Direct Cost: ¥7,600,000、Indirect Cost: ¥2,280,000)
Fiscal Year 2018: ¥10,270,000 (Direct Cost: ¥7,900,000、Indirect Cost: ¥2,370,000)
Keywords遺伝子制御ネットワーク推定 / 動的ベイジアンネットワークモデル / 1細胞RNAシーケンシング / 細胞系譜推定 / バイオインフォマティクス / 1細胞RNAシーケンシング / 細胞系譜解析 / ネットワーク解析 / 遺伝子発現解析 / ベイジアンネットワーク / トランスクリプトーム解析 / 時系列データ解析 / 1細胞トランスクリプトーム解析
Outline of Final Research Achievements

For biological phenomena in which intracellular gene regulation changes over time, such as cell differentiation and cellular stimulus response, we have developed a cell lineage inference method that obtains data from single-cell RNA sequencing and maps each cell on a pseudo-temporal time. The cells were sorted by this cell lineage inference, and the gene expression levels of each cell were considered as a time-series expression profile, and the regulatory relationship between individual genes in each cell was quantified by a newly developed score called "edge gain". Based on this score, gene regulatory networks can be inferred by a dynamic Bayesian network model from the time-series gene expression profiles obtained along the cell lineage, and it was shown that the inference accuracy was higher than that of existing methods.

Academic Significance and Societal Importance of the Research Achievements

本研究では、1細胞RNAシーケンシング技術により得られる細胞ごとの遺伝子発現プロファイルから、細胞分化や細胞の刺激応答などの進行過程を表す細胞系譜を推定する手法を開発した。さらに、細胞系譜上で各細胞の遺伝子発現量を抽出することで、非常に細かい時間間隔で時系列遺伝子発現プロファイルを構成して、動的ベイジアンネットワークモデルにより遺伝子制御ネットワークを推定する手法を開発した。実際に、造血幹細胞からの細胞分化や免疫細胞の刺激応答に本手法を適用することで、細胞系譜と遺伝子制御ネットワークを高い精度で推定することが示され、本手法が多様な生命現象に適用可能であることが示唆された。

Report

(5 results)
  • 2021 Annual Research Report   Final Research Report ( PDF )
  • 2020 Annual Research Report
  • 2019 Annual Research Report
  • 2018 Annual Research Report
  • Research Products

    (10 results)

All 2022 2021 2020 2019 2018 Other

All Int'l Joint Research (1 results) Journal Article (6 results) (of which Int'l Joint Research: 1 results,  Peer Reviewed: 6 results,  Open Access: 5 results) Presentation (3 results) (of which Int'l Joint Research: 3 results)

  • [Int'l Joint Research] National Cheng Kung University(その他の国・地域(台湾))

    • Related Report
      2019 Annual Research Report
  • [Journal Article] A Novel Method for Gene Regulatory Network Inference with Pseudotime Data Using Information Criterion2022

    • Author(s)
      Shuhei Yao, Kaito Uemura, Shigeto Seno, Hideo Matsuda
    • Journal Title

      International Journal of Bioscience, Biochemistry and Bioinformatics

      Volume: 12

    • Related Report
      2021 Annual Research Report
    • Peer Reviewed / Open Access
  • [Journal Article] Detection of Biomarkers for Epithelial-Mesenchymal Transition with Single-Cell Trajectory Inference2022

    • Author(s)
      Murayama Kosho、Matsuda Hideo
    • Journal Title

      Frontiers in Bioscience-Landmark

      Volume: 27 Issue: 4 Pages: 127-127

    • DOI

      10.31083/j.fbl2704127

    • Related Report
      2021 Annual Research Report
    • Peer Reviewed / Open Access
  • [Journal Article] A Method for Detection of Markers for Epithelial-Mesenchymal Transition based on Single Cell Transcriptomic Data2022

    • Author(s)
      Kosho Murayama, Hideo Matsuda
    • Journal Title

      Proceedings of 12th International Conference on Bioscience, Biochemistry and Bioinformatics

      Volume: - Pages: 57-62

    • DOI

      10.1145/3510427.3510436

    • Related Report
      2021 Annual Research Report
    • Peer Reviewed / Open Access
  • [Journal Article] Detecting Lineage-specific Marker Genes for Tumor Evolution based on Single Cell Transcriptome2021

    • Author(s)
      Kosho Murayama, Hideo Matsuda
    • Journal Title

      International Journal of Bioscience, Biochemistry and Bioinformatics

      Volume: 11

    • Related Report
      2020 Annual Research Report
    • Peer Reviewed / Open Access
  • [Journal Article] Long non-coding RNA 2310069B03Rik functions as a suppressor of Ucp1 expression under prolonged cold exposure in murine beige adipocytes2020

    • Author(s)
      Mari Iwase, Shoko Sakai, Shigeto Seno, Yu-Sheng Yeh, Tony Kuo, Haruya Takahashi, Wataru Nomura, Huei-Fen Jheng, Paul Horton, Naoki Osato, Hideo Matsuda, Kazuo Inoue, Teruo Kawada, Tsuyoshi Goto
    • Journal Title

      Bioscience, biotechnology, and biochemistry

      Volume: 84 Issue: 2 Pages: 305-313

    • DOI

      10.1080/09168451.2019.1677451

    • Related Report
      2019 Annual Research Report
    • Peer Reviewed / Open Access / Int'l Joint Research
  • [Journal Article] Improvement of detection performance of fusion genes from RNA-Seq data by clustering short reads2019

    • Author(s)
      Yoshiaki Sota, Shigeto Seno, Hironori Shigeta, Naoki Osato, Masafumi Shimoda, Shinzaburo Noguchi, Hideo Matsuda
    • Journal Title

      Journal of Bioinformatics and Computational Biology

      Volume: 印刷中

    • Related Report
      2018 Annual Research Report
    • Peer Reviewed
  • [Presentation] A method for inferring gene regulatory networks based on pseudo time-series gene expression profiles from single-cell RNA-seq data2019

    • Author(s)
      Kaito Uemura, Naoki Osato, Hironori Shigeta, Shigeto Seno, Hideo Matsuda
    • Organizer
      27th Conference on Intelligent Systems for Molecular Biology and 18th European Conference on Computational Biology (ISMB/ECCB)
    • Related Report
      2019 Annual Research Report
    • Int'l Joint Research
  • [Presentation] Single-cell transcriptome analysis for elucidating cell dynamics2019

    • Author(s)
      Naoki Osato, Hironori Shigeta, Shigeto Seno, Yutaka Uchida, Masaru Ishii, Hideo Matsuda
    • Organizer
      Single cell biology meets diagnostics - 12th International workshop on approaches to single cell analysis
    • Related Report
      2018 Annual Research Report
    • Int'l Joint Research
  • [Presentation] Detection of fusion genes from human breast cancer cell-line RNA-Seq data using shifted short read clustering2018

    • Author(s)
      Yoshiaki Sota, Shigeto Seno, Hironori Shigeta, Naoki Osato, Masafumi Shimoda, Shinzaburo Noguchi, Hideo Matsuda
    • Organizer
      IEEE 18th International Conference on Bioinformatics and Bioengineering (BIBE 2018)
    • Related Report
      2018 Annual Research Report
    • Int'l Joint Research

URL: 

Published: 2018-04-23   Modified: 2023-01-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi