Project/Area Number |
18H05205
|
Research Category |
Grant-in-Aid for Specially Promoted Research
|
Allocation Type | Single-year Grants |
Review Section |
Science and Engineering
|
Research Institution | Hokkaido University |
Principal Investigator |
Misawa Hiroaki 北海道大学, 電子科学研究所, 客員研究員 (30253230)
|
Co-Investigator(Kenkyū-buntansha) |
笹木 敬司 北海道大学, 電子科学研究所, 教授 (00183822)
上野 貢生 北海道大学, 理学研究院, 教授 (00431346)
Biju V・Pillai 北海道大学, 電子科学研究所, 教授 (60392651)
村越 敬 北海道大学, 理学研究院, 教授 (40241301)
|
Project Period (FY) |
2018-04-23 – 2023-03-31
|
Project Status |
Completed (Fiscal Year 2023)
|
Budget Amount *help |
¥621,010,000 (Direct Cost: ¥477,700,000、Indirect Cost: ¥143,310,000)
Fiscal Year 2022: ¥87,100,000 (Direct Cost: ¥67,000,000、Indirect Cost: ¥20,100,000)
Fiscal Year 2021: ¥87,620,000 (Direct Cost: ¥67,400,000、Indirect Cost: ¥20,220,000)
Fiscal Year 2020: ¥139,490,000 (Direct Cost: ¥107,300,000、Indirect Cost: ¥32,190,000)
Fiscal Year 2019: ¥161,980,000 (Direct Cost: ¥124,600,000、Indirect Cost: ¥37,380,000)
Fiscal Year 2018: ¥144,820,000 (Direct Cost: ¥111,400,000、Indirect Cost: ¥33,420,000)
|
Keywords | プラズモン / ナノ共振器 / 強結合 / 電子移動反応 / 光電子顕微鏡 |
Outline of Final Research Achievements |
We fabricated a titanium oxide electrode that exhibits optical nano-cavity functionality through a titanium oxide thin film/gold reflective film. Supporting gold nanoparticles that exhibit localized surface plasmon resonance on this electrode induces modal strong coupling. When used as a photoanode, this structure significantly enhances the optical electric field compared to plasmonic electrodes without an optical cavity, thereby increasing the quantum yield of photocurrent generation using water as an electron source.
In this study, we identified the factors contributing to the enhancement of the optical electric field in strong coupling electrodes and achieved greater optical electric field enhancement based on these principles, leading to increased quantum yield. Furthermore, we demonstrated that quantum coherence is induced between multiple localized surface plasmons via the cavity, which in turn enhances the quantum yield of hot carrier generation and electron transfer reactions.
|
Academic Significance and Societal Importance of the Research Achievements |
本研究で明らかとなった強結合電極において発現する複数の局在プラズモン間の量子コヒーレンスは、天然の光合成の色素タンパク質複合体における励起色素間でも観測されており、反応中心への高効率な光エネルギー伝達に寄与していることが示唆されている。今後、人工光合成においても量子コヒーレンスは太陽光エネルギー変換効率を改善する新たな因子として重要な役割を果たすと期待され、本研究成果の学術的意義は極めて大きい。また、本研究で得られた設計指針に基づき、量子コヒーレンスを用いた人工光合成をアルミニウムなどの安価な金属を用いて達成すれば、カーボンニュートラルな社会の実現に資すること大であり、その社会的意義は大きい。
|
Assessment Rating |
Ex-post Assessment Comments (Rating)
A-: In light of the aim of introducing the research area into the research categories, expected outcomes of research have been produced on the whole though the progress in a part of the research has been delayed.
|
Assessment Rating |
Interim Assessment Comments (Rating)
A: In light of the aim of introducing the research area into the research categories, the expected progress has been made in research.
|