• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Statistical inference for non-Gaussian Structural VAR model and its application

Research Project

Project/Area Number 18K01555
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeMulti-year Fund
Section一般
Review Section Basic Section 07030:Economic statistics-related
Research InstitutionHiroshima University of Economics

Principal Investigator

Maekawa Koichi  広島経済大学, 未登録, 名誉教授 (20033748)

Co-Investigator(Kenkyū-buntansha) 得津 康義  広島経済大学, 経済学部, 教授 (30412282)
Project Period (FY) 2018-04-01 – 2022-03-31
Project Status Completed (Fiscal Year 2021)
Budget Amount *help
¥3,900,000 (Direct Cost: ¥3,000,000、Indirect Cost: ¥900,000)
Fiscal Year 2020: ¥650,000 (Direct Cost: ¥500,000、Indirect Cost: ¥150,000)
Fiscal Year 2019: ¥1,430,000 (Direct Cost: ¥1,100,000、Indirect Cost: ¥330,000)
Fiscal Year 2018: ¥1,820,000 (Direct Cost: ¥1,400,000、Indirect Cost: ¥420,000)
Keywords構造VARモデル / 非正規誤差項 / 独立成分分析 / 疑似最尤推定量 / セミパラメトリック統計学 / モンテカルロ実験 / 金融緩和政策の効果分析 / 非ガウス型構造VARモデル / 疑似最尤法 / 構造変化の検定 / 異次元金融緩和政策モデル / 非ガウス型 / 疑似尤度最尤法 / 因果序列 / 金融緩和政策の実証分析 / 株価モデルへの応用 / fastICAの動作解析 / 非正規性 / 高頻度データ / 株式需要分析 / 実現ボラティリティ / 共和分分析 / 非正規攪乱項 / 因果序列の探索 / 株式取引需要関数 / 非ガウス性 / 経済ショックの波及経路
Outline of Final Research Achievements

An estimation method for non-Gaussian structural VAR models is proposed.The gist of the method is to estimate an unknown non-Gaussian distribution and use the estimated distribution to compute the maximum pseudo-likelihood estimator.We also presented the mathematical basis for this method based on semiparametric statistics. The accuracy of this estimator is also demonstrated through Monte Carlo experiments.
Using this method, we analyzed the effects of monetary easing policy in Japan.The results were reported at international conferences and seminars at other universities, and received a certain amount of recognition.
These reports were compiled into papers in Japanese and English and submitted to specialized journals, and the Japanese papers have already been published. Two papers in English are currently under submission.

Academic Significance and Societal Importance of the Research Achievements

構造VARモデルに対して誤差項に正規分布が仮定されることが多いが、現実のデータ分析ではしばしば正規分布に従わない。本研究では、このような場合に適した疑似最尤推定量を提案した。この方法は独立成分分析もでると構造VARモデルの類似性から得られたものであるが、この方法の数学的正当性をセミパラメトリック統計学の観点から明らかにした。また推定効率に関してはモンテカルロ実験によって確認することができた。この方法の妥当性を示したことは学術的意義がある。さらに非正規構造VARモデルによる日本の金融緩和政策の効果分析においてもこの方法が有効であることが示されたことは、本研究の社会的意義を示すものである。

Report

(5 results)
  • 2021 Annual Research Report   Final Research Report ( PDF )
  • 2020 Research-status Report
  • 2019 Research-status Report
  • 2018 Research-status Report
  • Research Products

    (12 results)

All 2021 2020 2019 2018

All Journal Article (5 results) (of which Open Access: 5 results) Presentation (7 results) (of which Int'l Joint Research: 6 results,  Invited: 6 results)

  • [Journal Article] Identification and Estimation of Structural VAR Model (II) : Under the Non-Gaussian Errors2021

    • Author(s)
      前川功一
    • Journal Title

      広島経済大学経済研究論集

      Volume: 44 Issue: 2 Pages: 21-32

    • DOI

      10.18996/keizai2021440202

    • NAID

      120007180150

    • URL

      https://hue.repo.nii.ac.jp/records/416

    • Year and Date
      2021-11-30
    • Related Report
      2021 Annual Research Report
    • Open Access
  • [Journal Article] A Time Series Analysis with Data of NAIJI2021

    • Author(s)
      上野信行、得津康義
    • Journal Title

      広島経済大学経済研究論集

      Volume: 44 Issue: 2 Pages: 5-19

    • DOI

      10.18996/keizai2021440201

    • NAID

      120007180151

    • URL

      https://hue.repo.nii.ac.jp/records/415

    • Year and Date
      2021-11-30
    • Related Report
      2021 Annual Research Report
    • Open Access
  • [Journal Article] On Likelihood Ratio Test and Wald Test in Non-Gaussian Structural VAR Model : Simulation Analysis2021

    • Author(s)
      前川功一
    • Journal Title

      広島経済大学経済研究論集

      Volume: 43 Issue: 3 Pages: 119-127

    • DOI

      10.18996/keizai2021430308

    • NAID

      120007018942

    • URL

      https://hue.repo.nii.ac.jp/records/428

    • Year and Date
      2021-03-31
    • Related Report
      2020 Research-status Report
    • Open Access
  • [Journal Article] Identification and Estimation of Structural VAR Model (I) : Under the Normal Error2020

    • Author(s)
      前川功一
    • Journal Title

      広島経済大学経済研究論集

      Volume: 43 Issue: 2 Pages: 23-40

    • DOI

      10.18996/keizai2020430202

    • NAID

      120006937451

    • URL

      https://hue.repo.nii.ac.jp/records/430

    • Year and Date
      2020-11-30
    • Related Report
      2020 Research-status Report
    • Open Access
  • [Journal Article] The Analysis of Stock Demands by Investor Type2020

    • Author(s)
      得津康義
    • Journal Title

      広島経済大学経済研究論集

      Volume: 42 Issue: 3 Pages: 41-56

    • DOI

      10.18996/keizai2020420303

    • NAID

      120006824947

    • URL

      https://hue.repo.nii.ac.jp/records/439

    • Year and Date
      2020-03-31
    • Related Report
      2019 Research-status Report
    • Open Access
  • [Presentation] Estimation of non-Gaussian structural VAR model under a flexible quasi-log-l2021

    • Author(s)
      Koichi Maekawa, Tadashi Nakanishi
    • Organizer
      4th InternationalConference on Econometrics and Statistics (EcoSta 2019)
    • Related Report
      2021 Annual Research Report
    • Int'l Joint Research / Invited
  • [Presentation] Application of non-GAussian SVAR model to the analysis of Japan's quantitative easing monetary policy2021

    • Author(s)
      Tadashi Nakanishi, Koichi Maekawa, Takashi Senda
    • Organizer
      4th International Conference on Econometrics and Statistics (EcoSta 2019)
    • Related Report
      2021 Annual Research Report
    • Int'l Joint Research / Invited
  • [Presentation] Application of non-Gaussian SVAR model to the analysis of Japans quantitative easing monetary policy2021

    • Author(s)
      T. Nakanishi, K Maekawa, Y. Senda
    • Organizer
      EcoSta2021
    • Related Report
      2020 Research-status Report
    • Int'l Joint Research / Invited
  • [Presentation] Estimation of Non-Gaussian Structural VAR model -A flexible Quasi Likelihood function Approach-2021

    • Author(s)
      K. Maekawa, T.Nakanishi
    • Organizer
      EcoSta2021
    • Related Report
      2020 Research-status Report
    • Int'l Joint Research / Invited
  • [Presentation] Estimation of Non-Gaussian Structural VAR model -A flexible Quasi Likelihood function Approach-2021

    • Author(s)
      k. Maekawa, T. Nakanishi
    • Organizer
      SMU Econometric Conferenc
    • Related Report
      2020 Research-status Report
    • Int'l Joint Research / Invited
  • [Presentation] Statistical inference of non-Gaussian structural vector autoregressive (VAR) models2019

    • Author(s)
      Koichi Maekawa and Gigih Fitrianto
    • Organizer
      3rd International Conference on Econometrics and Statistics (EcoSta 2019)
    • Related Report
      2019 Research-status Report
    • Int'l Joint Research
  • [Presentation] 非正規型構造VARモデルに関する最近の研究動向2018

    • Author(s)
      前川功一
    • Organizer
      大阪大学 数理・データ科学教育研究センター主催 2018年度中之島ワークショップ
    • Related Report
      2018 Research-status Report
    • Invited

URL: 

Published: 2018-04-23   Modified: 2023-01-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi