• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Extraction of dance features by unsupervised deep learning of motion capture data and application to education

Research Project

Project/Area Number 18K02893
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeMulti-year Fund
Section一般
Review Section Basic Section 09070:Educational technology-related
Research InstitutionOchanomizu University

Principal Investigator

NAKAMURA MINAKO  お茶の水女子大学, 基幹研究院, 准教授 (20345408)

Co-Investigator(Kenkyū-buntansha) 芝野 耕司  東京外国語大学, その他部局等, 名誉教授 (50216024)
Project Period (FY) 2018-04-01 – 2022-03-31
Project Status Completed (Fiscal Year 2021)
Budget Amount *help
¥4,290,000 (Direct Cost: ¥3,300,000、Indirect Cost: ¥990,000)
Fiscal Year 2020: ¥1,040,000 (Direct Cost: ¥800,000、Indirect Cost: ¥240,000)
Fiscal Year 2019: ¥1,560,000 (Direct Cost: ¥1,200,000、Indirect Cost: ¥360,000)
Fiscal Year 2018: ¥1,690,000 (Direct Cost: ¥1,300,000、Indirect Cost: ¥390,000)
Keywords民族舞踊学 / モーションキャプチャ / Labanotation / OpenPose / Open Pose / データベース / 深層学習 / 舞踊教育 / 舞踊動作分析
Outline of Final Research Achievements

We collected motion capture data in the multimodal database of Carnegie Mellon University, which is available on the Internet, and investigated papers presented at international dance-related conferences to obtain motion capture data, but we were unable to collect sufficient data. This is due to the fact that motion capture requires a lot of time and effort.
In 2017, Open Pose, which obtains motion data by applying deep learning to video data from CMU, was developed, making it possible to obtain motion data from a large amount of video data available on the Internet.
The research method was changed to research utilizing these results, and a new proposal for Grant-in-Aid for Scientific Research(B) (21H03771) was made.

Academic Significance and Societal Importance of the Research Achievements

現在先端研究分野で最も注目を集めているDeep Learningを用いて,これまでDeep LearningやAIが適用されることの殆どなかった動作認識分野を開拓する点がこの研究の独創的な点である。Deep Learningを同時に比較民族舞踊研究の視点から各民族舞踊の特徴抽出を行うことによって,舞踊のモーションキャプチャデータからの内在的分析を可能とすることによって,量的に基盤を持つ舞踊研究を可能とするとともに,より客観的な舞踊研究への道を拓く。

Report

(5 results)
  • 2021 Annual Research Report   Final Research Report ( PDF )
  • 2020 Research-status Report
  • 2019 Research-status Report
  • 2018 Research-status Report
  • Research Products

    (8 results)

All 2021 2020 2019 2018

All Journal Article (2 results) (of which Int'l Joint Research: 1 results,  Open Access: 2 results,  Peer Reviewed: 1 results) Presentation (6 results) (of which Int'l Joint Research: 2 results,  Invited: 1 results)

  • [Journal Article] インタラクティブ・エージェントの語彙セットに対する概念空間の割り当て手法の検討2020

    • Author(s)
      佐藤 真知子,和家 尚希,笹渕 一宏,中村 美奈子,池内 克史
    • Journal Title

      情報処理学会研究報告

      Volume: HCI-187 Pages: 1-8

    • Related Report
      2019 Research-status Report
    • Open Access
  • [Journal Article] Describing Upper-Body Motions Based on Labanotation for Learning-from-Observation Robots2018

    • Author(s)
      Katsushi Ikeuchi, Zhaoyuan Ma, Zengqiang Yan, Shunsuke Kudoh & Minako Nakamura
    • Journal Title

      International Journal of Computer Vision

      Volume: 126(12) Issue: 12 Pages: 1415-1429

    • DOI

      10.1007/s11263-018-1123-1

    • Related Report
      2018 Research-status Report
    • Peer Reviewed / Open Access / Int'l Joint Research
  • [Presentation] OpenPoseによる民族舞踊研究ーバリ舞踊を事例として2021

    • Author(s)
      中村美奈子
    • Organizer
      日本スポーツ人類学会
    • Related Report
      2021 Annual Research Report
  • [Presentation] 比較舞踊研究の基盤としてのデジタルアーカイブ構築の試み2021

    • Author(s)
      中村美奈子
    • Organizer
      舞踊学会
    • Related Report
      2021 Annual Research Report
  • [Presentation] Open Poseによる民族舞踊研究-バリ舞踊を事例として2021

    • Author(s)
      中村美奈子
    • Organizer
      日本スポーツ人類学会
    • Related Report
      2020 Research-status Report
  • [Presentation] インタラクティブ・エージェントの語彙セットに対する概念空間の割り当て手法の検討2020

    • Author(s)
      佐藤 真知子,和家 尚希,笹渕 一宏,中村 美奈子,池内 克史
    • Organizer
      情報処理学会第153回CE研究発表会
    • Related Report
      2019 Research-status Report
  • [Presentation] Mining formulaic sequences from a huge corpus of Japanese TV closed caption2019

    • Author(s)
      Minako Nakamura and Kohji Shibano
    • Organizer
      DH_BUDAPEST_2019
    • Related Report
      2019 Research-status Report
    • Int'l Joint Research
  • [Presentation] A Study on Balinese Dance in Indonesia from the viewpoint of Digital Humanities2019

    • Author(s)
      Minako Nakamura
    • Organizer
      韓国芸術総合大学舞踊院理論コース第21回国際シンポジウム
    • Related Report
      2019 Research-status Report
    • Int'l Joint Research / Invited

URL: 

Published: 2018-04-23   Modified: 2023-01-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi