Project/Area Number |
18K02903
|
Research Category |
Grant-in-Aid for Scientific Research (C)
|
Allocation Type | Multi-year Fund |
Section | 一般 |
Review Section |
Basic Section 09070:Educational technology-related
|
Research Institution | Prefectural University of Hiroshima |
Principal Investigator |
UNO TAKESHI 県立広島大学, 地域創生学部, 准教授 (20305783)
|
Project Period (FY) |
2018-04-01 – 2022-03-31
|
Project Status |
Completed (Fiscal Year 2021)
|
Budget Amount *help |
¥3,250,000 (Direct Cost: ¥2,500,000、Indirect Cost: ¥750,000)
Fiscal Year 2021: ¥650,000 (Direct Cost: ¥500,000、Indirect Cost: ¥150,000)
Fiscal Year 2020: ¥780,000 (Direct Cost: ¥600,000、Indirect Cost: ¥180,000)
Fiscal Year 2019: ¥910,000 (Direct Cost: ¥700,000、Indirect Cost: ¥210,000)
Fiscal Year 2018: ¥910,000 (Direct Cost: ¥700,000、Indirect Cost: ¥210,000)
|
Keywords | プログラミング演習 / リアルタイム演習状況把握 / 成績不振兆候者抽出 / リアルタイム学習状況把握 / プログラミング演習システム / オンライン演習 / 学習成果のフィードバック / Webアプリケーション / プログラミング教育 |
Outline of Final Research Achievements |
The purpose of this study was to quantitatively grasp the learning situation of each learner in programming learning and to provide accurate guidance. First, we developed a C language programming learning environment that can be used on the Web and stored the learning data on the server. Next, using the accumulated learning data, we developed and operated a feedback system that evaluates the exercise process. By applying this, we have developed and operated a system that makes it possible to grasp the progress of individual learners' exercises in class in real time and improve the efficiency of teaching. Utilizing these data, we devised a procedure for early detection of learner with poor grades, and made it possible to detect learner with poor grades during class.
|
Academic Significance and Societal Importance of the Research Achievements |
近年,小中学校で必修化されるなど,プログラミング教育の重要性が認識されている.プログラミング教育には実習が不可欠となるが,実習環境の構築や,指導側の進捗把握が難しいという問題があった. そこで本研究では,これらの問題を解決するため,Web上で利用可能なC言語プログラミング学習環境の開発と運用を行い,サーバに蓄積した学習データを用い,演習過程の評価を行うフィードバックシステムの開発と運用を行った.さらに,これらの学習データを活用し,定量的な手法で成績不振兆候者の早期発見を行う手順を考案し,授業進行中における成績不振兆候者の検出を可能とした.
|