• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Integration of computational and statistical models for elucidating mental processes from behavioral data

Research Project

Project/Area Number 18K03173
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeMulti-year Fund
Section一般
Review Section Basic Section 10040:Experimental psychology-related
Research InstitutionNagoya University

Principal Investigator

Katahira Kentaro  名古屋大学, 情報学研究科, 准教授 (60569218)

Co-Investigator(Kenkyū-buntansha) 中尾 敬  広島大学, 人間社会科学研究科(教), 准教授 (40432702)
Project Period (FY) 2018-04-01 – 2021-03-31
Project Status Completed (Fiscal Year 2020)
Budget Amount *help
¥4,290,000 (Direct Cost: ¥3,300,000、Indirect Cost: ¥990,000)
Fiscal Year 2020: ¥1,300,000 (Direct Cost: ¥1,000,000、Indirect Cost: ¥300,000)
Fiscal Year 2019: ¥1,300,000 (Direct Cost: ¥1,000,000、Indirect Cost: ¥300,000)
Fiscal Year 2018: ¥1,690,000 (Direct Cost: ¥1,300,000、Indirect Cost: ¥390,000)
Keywords計算論モデリング / 強化学習モデル / 統計モデル / 選択行動 / モデルベースfMRI / 固執性 / 強化学習 / 行動モデリング / 計算論モデル / 統計モデリング
Outline of Final Research Achievements

Computational modeling has been widely used in the analysis of behavioral and brain activity data. This approach utilizes mathematical models that represent the processes underlying behavior. However, it has not been sufficiently understood what features of the actual data are captured by the computational models. In this study, we investigated the statistical properties of the data captured by computational models by examining the relation to traditional statistical models. In addition, we reconsidered the characteristics of behavior in the learning process by applying our framework to actual behavioral data. The results suggest that the properties of learning and brain activity associated with mental disorders, which have been previously reported, may be strongly influenced by estimation errors and misspecifications of the models.

Academic Significance and Societal Importance of the Research Achievements

行動の計算論モデリングは,人間やその他の動物の行動から内的なプロセスを推定することを可能にし,行動の理解や予測に貢献することが期待されている枠組みである。しかし,そこで用いられてきた計算論モデルは,そのプロセスは明確に定義されていても,それがどのように行動に現れるかが十分に理解されていなかった。本研究はモデルと行動データの性質の対応づけを可能にする枠組みを作り,それにより行動の理由の適切な理解と,それに基づく行動の予測を可能にすることに貢献するものである。本研究の成果には,人間理解への貢献という学術的意義と,行動予測という産業応用の基盤を作ったという社会的意義があるといえる。

Report

(4 results)
  • 2020 Annual Research Report   Final Research Report ( PDF )
  • 2019 Research-status Report
  • 2018 Research-status Report
  • Research Products

    (17 results)

All 2021 2020 2019 2018

All Journal Article (9 results) (of which Int'l Joint Research: 3 results,  Peer Reviewed: 9 results,  Open Access: 9 results) Presentation (6 results) (of which Int'l Joint Research: 4 results,  Invited: 1 results) Book (2 results)

  • [Journal Article] Dissociation between asymmetric value updating and perseverance in human reinforcement learning2021

    • Author(s)
      Sugawara Michiyo, Katahira Kentaro
    • Journal Title

      Scientific Reports

      Volume: 11 Issue: 1 Pages: 3574-3574

    • DOI

      10.1038/s41598-020-80593-7

    • Related Report
      2020 Annual Research Report
    • Peer Reviewed / Open Access
  • [Journal Article] Revisiting the importance of model fitting for model-based fMRI: It does matter in computational psychiatry2021

    • Author(s)
      Katahira Kentaro, Toyama Asako
    • Journal Title

      PLOS Computational Biology

      Volume: 17 Issue: 2 Pages: e1008738-e1008738

    • DOI

      10.1371/journal.pcbi.1008738

    • Related Report
      2020 Annual Research Report
    • Peer Reviewed / Open Access
  • [Journal Article] Computational modeling of choice-induced preference change: A Reinforcement-Learning-based approach2021

    • Author(s)
      Zhu Jianhong, Hashimoto Junya, Katahira Kentaro, Hirakawa Makoto, Nakao Takashi
    • Journal Title

      PLOS ONE

      Volume: 16 Issue: 1 Pages: e0244434-e0244434

    • DOI

      10.1371/journal.pone.0244434

    • Related Report
      2020 Annual Research Report
    • Peer Reviewed / Open Access
  • [Journal Article] Retrospective surprise: A computational component for active inference2020

    • Author(s)
      Katahira Kentaro、Kunisato Yoshihiko、Okimura Tsukasa、Yamashita Yuichi
    • Journal Title

      Journal of Mathematical Psychology

      Volume: 96 Pages: 102347-102347

    • DOI

      10.1016/j.jmp.2020.102347

    • NAID

      120006884953

    • Related Report
      2019 Research-status Report
    • Peer Reviewed / Open Access / Int'l Joint Research
  • [Journal Article] Cognitive biases and perseverance in reinforcement learning: Does your current choice behavior depend on past “choice outcome” or “choice <i>per se</i>” ?2019

    • Author(s)
      菅原 通代、片平 健太郎
    • Journal Title

      The Japanese Journal of Psychonomic Science

      Volume: 38 Issue: 1 Pages: 48-55

    • DOI

      10.14947/psychono.38.5

    • NAID

      130007760486

    • ISSN
      0287-7651, 2188-7977
    • Year and Date
      2019-09-30
    • Related Report
      2019 Research-status Report
    • Peer Reviewed / Open Access / Int'l Joint Research
  • [Journal Article] The Effect of Reduced Learning Ability on Avoidance in Psychopathy: A Computational Approach2019

    • Author(s)
      Oba Takeyuki、Katahira Kentaro、Ohira Hideki
    • Journal Title

      Frontiers in Psychology

      Volume: 10 Pages: 1-15

    • DOI

      10.3389/fpsyg.2019.02432

    • Related Report
      2019 Research-status Report
    • Peer Reviewed / Open Access / Int'l Joint Research
  • [Journal Article] Biases in estimating the balance between model-free and model-based learning systems due to model misspecification2019

    • Author(s)
      Toyama Asako, Katahira Kentaro, Ohira Hideki
    • Journal Title

      Journal of Mathematical Psychology

      Volume: 91 Pages: 88-102

    • DOI

      10.1016/j.jmp.2019.03.007

    • Related Report
      2018 Research-status Report
    • Peer Reviewed / Open Access
  • [Journal Article] Reinforcement learning with parsimonious computation and a forgetting process2019

    • Author(s)
      Toyama Asako, Katahira Kentaro, Ohira Hideki
    • Journal Title

      Frontiers in Human Neuroscience

      Volume: 13 Pages: 153-153

    • DOI

      10.3389/fnhum.2019.00153

    • Related Report
      2018 Research-status Report
    • Peer Reviewed / Open Access
  • [Journal Article] The statistical structures of reinforcement learning with asymmetric value updates2018

    • Author(s)
      Katahira Kentaro
    • Journal Title

      Journal of Mathematical Psychology

      Volume: 87 Pages: 31-45

    • DOI

      10.1016/j.jmp.2018.09.002

    • Related Report
      2018 Research-status Report
    • Peer Reviewed / Open Access
  • [Presentation] 行動データの計算論モデリングと認知行動療法への貢献の可能性2020

    • Author(s)
      片平 健太郎
    • Organizer
      日本認知・行動療法学会第46回大会
    • Related Report
      2020 Annual Research Report
  • [Presentation] Validation of cognitive bias represented by reinforcement learning with asymmetric value updates2019

    • Author(s)
      Sugawara, M. & Katahira, K.
    • Organizer
      The Multi-disciplinary Conference on Reinforcement Learning and Decision Making (RLDM2019)
    • Related Report
      2019 Research-status Report
    • Int'l Joint Research
  • [Presentation] Forgetting Process in Model-Free and Model-Based Reinforcement Learning2019

    • Author(s)
      Toyama, A., Katahira, K., & Ohira, H.
    • Organizer
      The Multi-disciplinary Conference on Reinforcement Learning and Decision Making (RLDM2019)
    • Related Report
      2019 Research-status Report
    • Int'l Joint Research
  • [Presentation] Pseudo-Learning Rate Modulation by the Forgetting of Action Value when Environmental Volatility Changes2019

    • Author(s)
      Oshima, S. & Katahira, K.
    • Organizer
      The Multi-disciplinary Conference on Reinforcement Learning and Decision Making (RLDM2019)
    • Related Report
      2019 Research-status Report
    • Int'l Joint Research
  • [Presentation] The learning mechanism of shaping risk preference and relations with psychopathic traits2019

    • Author(s)
      Oba, T., Katahira, K., & Ohira, H.
    • Organizer
      The Multi-disciplinary Conference on Reinforcement Learning and Decision Making (RLDM2019)
    • Related Report
      2019 Research-status Report
    • Int'l Joint Research
  • [Presentation] 行動データの計算論モデリング―統計モデリングとの関係および注意点―2019

    • Author(s)
      片平 健太郎
    • Organizer
      京都大学MACS (数理と他分野との融合促進のための教育プログラム)セミナー
    • Related Report
      2018 Research-status Report
    • Invited
  • [Book] 計算論的精神医学2019

    • Author(s)
      国里 愛彦、片平 健太郎、沖村 宰、山下 祐一
    • Total Pages
      328
    • Publisher
      勁草書房
    • ISBN
      432625131X
    • Related Report
      2018 Research-status Report
  • [Book] 行動データの計算論モデリング2018

    • Author(s)
      片平健太郎
    • Total Pages
      224
    • Publisher
      株式会社オーム社
    • ISBN
      4274222616
    • Related Report
      2018 Research-status Report

URL: 

Published: 2018-04-23   Modified: 2022-01-27  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi