• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Studies on symmetric functions by algebraic analysis of quantum integrable models

Research Project

Project/Area Number 18K03205
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeMulti-year Fund
Section一般
Review Section Basic Section 11010:Algebra-related
Research InstitutionTokyo University of Marine Science and Technology

Principal Investigator

Motegi Kohei  東京海洋大学, 学術研究院, 准教授 (30583033)

Project Period (FY) 2018-04-01 – 2021-03-31
Project Status Completed (Fiscal Year 2020)
Budget Amount *help
¥2,990,000 (Direct Cost: ¥2,300,000、Indirect Cost: ¥690,000)
Fiscal Year 2020: ¥910,000 (Direct Cost: ¥700,000、Indirect Cost: ¥210,000)
Fiscal Year 2019: ¥1,040,000 (Direct Cost: ¥800,000、Indirect Cost: ¥240,000)
Fiscal Year 2018: ¥1,040,000 (Direct Cost: ¥800,000、Indirect Cost: ¥240,000)
Keywords量子可積分系 / 対称関数 / 可解確率過程 / 数え上げ幾何 / 組合せ論 / 楕円対称関数 / Grothendieck多項式 / Grassmann束 / Grothendieck群 / 分配関数 / Whittaker関数 / 楕円パフィアン / 双対公式 / 量子群 / 代数等式
Outline of Final Research Achievements

By developing the Izergin-Korepin analysis, we analyzed various partition functions of integrable lattice models and determined their exact forms which are given by factorial versions of symplectic Schur functions, Whittaker functions, elliptic Pfaffians, elliptic multivariable functions. Using the correspondence between partition functions and special functions, we derived identities, dual Cauchy formulas for Whittaker functions, duality between elliptic Pfaffians, for example.
Using Yang-Baxter algebra, we also rederived identities recently discovered and also made application to pushforward formulas in algebraic geometry. We also derived identities and formulas for refined dual Grothendieck polynomials by using partition functions, Yang-Baxter algebra and probability theory.

Academic Significance and Societal Importance of the Research Achievements

対称関数、特殊関数は数理物理、数学における重要な研究対象であり、その性質を可積分系の観点や手法を用いて研究した。可積分系の観点を取り入れることにより、伝統的な手法だけでは捉えられなかったことを捉えることができるようになる。例えば新たな恒等式、公式の導出である。また、関連する代数幾何への応用や、確率論の観点も取り入れて研究することができ、可積分系と数学の他分野との相互作用に貢献できたのではないかと考えている。

Report

(4 results)
  • 2020 Annual Research Report   Final Research Report ( PDF )
  • 2019 Research-status Report
  • 2018 Research-status Report
  • Research Products

    (9 results)

All 2021 2020 2019 2018 Other

All Int'l Joint Research (1 results) Journal Article (5 results) (of which Peer Reviewed: 5 results,  Open Access: 2 results) Presentation (3 results) (of which Int'l Joint Research: 2 results)

  • [Int'l Joint Research] The University of Queensland(オーストラリア)

    • Related Report
      2020 Annual Research Report
  • [Journal Article] A class of partition functions associated with E_{tau,eta}(gl_3) by Izergin-Korepin analysis2020

    • Author(s)
      Motegi Kohei
    • Journal Title

      Journal of Mathematical Physics

      Volume: 61 Issue: 5 Pages: 053507-053507

    • DOI

      10.1063/1.5129567

    • Related Report
      2020 Annual Research Report
    • Peer Reviewed
  • [Journal Article] Quantum inverse scattering method and generalizations of symplectic Schur functions and Whittaker functions2020

    • Author(s)
      Motegi Kohei、Sakai Kazumitsu、Watanabe Satoshi
    • Journal Title

      Journal of Geometry and Physics

      Volume: 149 Pages: 103571-103571

    • DOI

      10.1016/j.geomphys.2019.103571

    • Related Report
      2020 Annual Research Report
    • Peer Reviewed
  • [Journal Article] Integrability approach to Feher-Nemethi-Rimanyi-Guo-Sun type identities for factorial Grothendieck polynomials2020

    • Author(s)
      Kohei Motegi
    • Journal Title

      Nuclear Physics B

      Volume: 954 Pages: 114998-114998

    • DOI

      10.1016/j.nuclphysb.2020.114998

    • Related Report
      2019 Research-status Report
    • Peer Reviewed / Open Access
  • [Journal Article] Izergin-Korepin approach to symmetric functions2019

    • Author(s)
      K. Motegi, K. sakai
    • Journal Title

      Journal of Physics: Conference Series

      Volume: 1194 Pages: 012077-012077

    • DOI

      10.1088/1742-6596/1194/1/012077

    • Related Report
      2018 Research-status Report
    • Peer Reviewed / Open Access
  • [Journal Article] Elliptic free-fermion model with OS boundary and elliptic Pfaffians2018

    • Author(s)
      K. Motegi
    • Journal Title

      Letters in Mathematical Physics

      Volume: 109 Issue: 4 Pages: 923-943

    • DOI

      10.1007/s11005-018-1130-8

    • Related Report
      2018 Research-status Report
    • Peer Reviewed
  • [Presentation] Izergin-Korepin analysis on wavefunctions2021

    • Author(s)
      Kohei Motegi
    • Organizer
      Solvable Lattice Models Seminar (Zoom seminar)
    • Related Report
      2020 Annual Research Report
  • [Presentation] Izergin-Korepin method to elliptic identities2019

    • Author(s)
      Kohei Motegi
    • Organizer
      Elliptic integrable systems, special functions and quantum field theory
    • Related Report
      2019 Research-status Report
    • Int'l Joint Research
  • [Presentation] Izergin-Korepin approach to symmetric functions2018

    • Author(s)
      Kohei Motegi
    • Organizer
      Group 32
    • Related Report
      2018 Research-status Report
    • Int'l Joint Research

URL: 

Published: 2018-04-23   Modified: 2022-01-27  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi