• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Combinatorics related to representation theory and enumeration of paths

Research Project

Project/Area Number 18K03206
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeMulti-year Fund
Section一般
Review Section Basic Section 11010:Algebra-related
Research InstitutionHokkaido University (2022)
Shinshu University (2018-2021)

Principal Investigator

NUMATA YASUHIDE  北海道大学, 理学研究院, 教授 (00455685)

Project Period (FY) 2018-04-01 – 2023-03-31
Project Status Completed (Fiscal Year 2022)
Budget Amount *help
¥4,550,000 (Direct Cost: ¥3,500,000、Indirect Cost: ¥1,050,000)
Fiscal Year 2022: ¥520,000 (Direct Cost: ¥400,000、Indirect Cost: ¥120,000)
Fiscal Year 2021: ¥910,000 (Direct Cost: ¥700,000、Indirect Cost: ¥210,000)
Fiscal Year 2020: ¥910,000 (Direct Cost: ¥700,000、Indirect Cost: ¥210,000)
Fiscal Year 2019: ¥910,000 (Direct Cost: ¥700,000、Indirect Cost: ¥210,000)
Fiscal Year 2018: ¥1,300,000 (Direct Cost: ¥1,000,000、Indirect Cost: ¥300,000)
KeywordsBijective proof / グラフ / Hook Length formula / 強レフシェッツ性 / トグリング群 / directed edge polytope / 重み付き母関数 / Hilmann-Grasslアルゴリズム / 独立集合 / トグリング / ルート多面体 / Face Poset / パスグラフ / ヤング盤 / Lefschetz property / Jacobi-Trudi formula / 半順序集合 / hook length formula / 数え上げ組合せ論 / ヤング図形 / Hook length formula / Hillman-Grasslアルゴリズム
Outline of Final Research Achievements

We study an algorithm called Hillman-Grassl algorithm, which is used for a bijective prof of Hook Length formula. We introduced axioms to generalize the algorithm. In our theory, the algorithm is realized as an algorithm to create a path in some graphs.
Moreover we apply our knowledge, obtained by this study, to the other tartgets as follows: 1. We study artinian gorenstein algebras defined by the weighted generating function of matcings. We show the Lefschetz property for the algebras. 2. We also study a quotient algebras monomial ideals. We calculate the determinants of multiplication map in the algebra. We show the Lefschetz property for the algebras. 3. We also study the structure of the toggling group of a path graph. We show the toggling group is the symmetric group on the independent sets of the path graph. 4. We also a polytope defined by a directed graph. We call it the directed edge polytope. We give an characterization for faces and facets of the polytope.

Academic Significance and Societal Importance of the Research Achievements

本研究では, 組合せ論的構造に着目し, それらがコントールする代数的対象や多面体について研究を行いました. Hook Length formulaに対する研究では, 鍵となるアルゴリズムに対し, 一般化をした上で統一的な解釈を行いました. 代数系や多面体に対する研究では, 多面体の面の特徴付け与えるなどといった結果を得ており, 今後の研究に繋がることが期待できます.

Report

(6 results)
  • 2022 Annual Research Report   Final Research Report ( PDF )
  • 2021 Research-status Report
  • 2020 Research-status Report
  • 2019 Research-status Report
  • 2018 Research-status Report
  • Research Products

    (5 results)

All 2023 2022 2020 2019

All Journal Article (1 results) (of which Peer Reviewed: 1 results,  Open Access: 1 results) Presentation (2 results) (of which Int'l Joint Research: 2 results) Funded Workshop (2 results)

  • [Journal Article] On the action of the toggle group of the Dynkin diagram of type A2022

    • Author(s)
      Yasuhide Numata, Yuiko Yamanouchi
    • Journal Title

      Algebraic Combinatorics

      Volume: Volume 5, no. 1 Issue: 1 Pages: 149-161

    • DOI

      10.5802/alco.204

    • Related Report
      2021 Research-status Report
    • Peer Reviewed / Open Access
  • [Presentation] On the face poset of directed edge polytopes2023

    • Author(s)
      Yasuhide Numata
    • Organizer
      Characteristic Polynomials of Hyperplane Arrangements and Ehrhart Polynomials of Convex Polytopes
    • Related Report
      2022 Annual Research Report
    • Int'l Joint Research
  • [Presentation] Faces of Directed Edge Polytopes2023

    • Author(s)
      Y. Numata, Y. Takahashi, D. Tamaki
    • Organizer
      The 35th International Conference on Formal Power Series and Algebraic Combinatorics
    • Related Report
      2022 Annual Research Report
    • Int'l Joint Research
  • [Funded Workshop] Afternoon Seminars on line2020

    • Related Report
      2020 Research-status Report
  • [Funded Workshop] Probability, Statistics, Matrix, in Tachikawa, 2019.2019

    • Related Report
      2019 Research-status Report

URL: 

Published: 2018-04-23   Modified: 2024-01-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi