• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Fusion of nonarchimedean geometry and Arakelov geometry

Research Project

Project/Area Number 18K03211
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeMulti-year Fund
Section一般
Review Section Basic Section 11010:Algebra-related
Research InstitutionUniversity of Tsukuba (2021-2023)
Kyoto University (2018-2020)

Principal Investigator

Yamaki Kazuhiko  筑波大学, 数理物質系, 教授 (80402973)

Project Period (FY) 2018-04-01 – 2024-03-31
Project Status Completed (Fiscal Year 2023)
Budget Amount *help
¥4,420,000 (Direct Cost: ¥3,400,000、Indirect Cost: ¥1,020,000)
Fiscal Year 2021: ¥780,000 (Direct Cost: ¥600,000、Indirect Cost: ¥180,000)
Fiscal Year 2020: ¥1,170,000 (Direct Cost: ¥900,000、Indirect Cost: ¥270,000)
Fiscal Year 2019: ¥1,170,000 (Direct Cost: ¥900,000、Indirect Cost: ¥270,000)
Fiscal Year 2018: ¥1,300,000 (Direct Cost: ¥1,000,000、Indirect Cost: ¥300,000)
Keywords非アルキメデス的幾何 / ベルコビッチ解析空間 / トロピカル幾何 / 骨格 / 忠実トロピカル化 / トロピカル化 / ベルコビッチ空間 / スケルトン / テータ函数 / 幾何的ボゴモロフ予想 / アラケロフ幾何 / 凸幾何 / ハイブリッド空間
Outline of Final Research Achievements

In Arakelov geometry, we study an arithmetic variety, i.e., something defined as the common zero of a polynomial system of integer coefficients. If we fix a prime p and regard the coefficients of the polynomials definining the variety as p-adic numbers, it can be regarded as a nonarchimedean analytic geometric object over the p-adic number Thus, nonarchimedean geometric objects appear naturally in Arakelov geometry.
Among the nonarchimedean geometric objects, this study focuses mainly on Berkovich analytic spaces and tropical varieties. In particular, we obtained results on the relation between the “skeleton,” which is an important closed subset of the Berkovich analytic space, and its tropicalization; in particular, the existence of an identitification, called a “faithful tropicalization".

Academic Significance and Societal Importance of the Research Achievements

研究成果は、ベルコビッチ解析空間上における様々な解析的対象を調べる上で大きな意義がある。忠実トロピカル化を通じて、解析空間上の対象をトロピカル幾何的枠組みにおいて組み合わせ論的に考察することが可能となる点が大きい。また、忠実トロピカル化問題はトロピカル化という操作における基本的問題であり、この分野の基礎理論構築という視点からも意義が深い。社会的意義は、現時点では特に見当たらないが、トロピカル幾何は他の様々な分野で応用されていることから、将来的に意味のある応用が得られることは期待できる。

Report

(7 results)
  • 2023 Annual Research Report   Final Research Report ( PDF )
  • 2022 Research-status Report
  • 2021 Research-status Report
  • 2020 Research-status Report
  • 2019 Research-status Report
  • 2018 Research-status Report
  • Research Products

    (9 results)

All 2023 2022 2021 2019 Other

All Presentation (6 results) (of which Int'l Joint Research: 3 results,  Invited: 6 results) Remarks (3 results)

  • [Presentation] アーベル多様体の骨格の忠実トロピカル化2023

    • Author(s)
      山木 壱彦
    • Organizer
      第30回代数曲面ワークショップ
    • Related Report
      2023 Annual Research Report
    • Invited
  • [Presentation] 多面体的多様体の因子に付随した忠実埋め込み2022

    • Author(s)
      山木壱彦
    • Organizer
      第4回トロピカル幾何ワークショップ
    • Related Report
      2021 Research-status Report
    • Invited
  • [Presentation] Progress in the geometric Bogomolov conjecture2021

    • Author(s)
      Kazuhiko Yamaki
    • Organizer
      Recent Developments in Algebraic Geometry, Arithmetic and Dynamics Part 1
    • Related Report
      2021 Research-status Report
    • Int'l Joint Research / Invited
  • [Presentation] 幾何的ボゴモロフ予想の進展2021

    • Author(s)
      山木 壱彦
    • Organizer
      日本数学会
    • Related Report
      2020 Research-status Report
    • Invited
  • [Presentation] Ample divisors on tropical varieties2019

    • Author(s)
      Kazuhiko Yamaki
    • Organizer
      Workshop "Regensburg days on non-archimedean geometry"
    • Related Report
      2019 Research-status Report
    • Int'l Joint Research / Invited
  • [Presentation] Ample divisors on tropical toric varieties2019

    • Author(s)
      Kazuhiko Yamaki
    • Organizer
      The 14th Kagoshima Algebra-Analysis-Geometry Seminar --- On the occasion of Prof. Yokura's retirement ---
    • Related Report
      2018 Research-status Report
    • Int'l Joint Research / Invited
  • [Remarks] 筑波大学 研究者総覧

    • URL

      https://trios.tsukuba.ac.jp/ja/researchers/0000004512

    • Related Report
      2021 Research-status Report
  • [Remarks] 筑波大学 研究者総覧

    • URL

      https://trios.tsukuba.ac.jp/researcher/0000004512

    • Related Report
      2020 Research-status Report
  • [Remarks]

    • URL

      https://kyouindb.iimc.kyoto-u.ac.jp/j/jO6oW

    • Related Report
      2018 Research-status Report

URL: 

Published: 2018-04-23   Modified: 2025-01-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi