• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Number theory, geometry and their application to algorithm

Research Project

Project/Area Number 18K03213
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeMulti-year Fund
Section一般
Review Section Basic Section 11010:Algebra-related
Research InstitutionHiroshima University

Principal Investigator

MATSUMOTO Makoto  広島大学, 先進理工系科学研究科(理), 教授 (70231602)

Project Period (FY) 2018-04-01 – 2023-03-31
Project Status Completed (Fiscal Year 2022)
Budget Amount *help
¥3,900,000 (Direct Cost: ¥3,000,000、Indirect Cost: ¥900,000)
Fiscal Year 2022: ¥780,000 (Direct Cost: ¥600,000、Indirect Cost: ¥180,000)
Fiscal Year 2021: ¥780,000 (Direct Cost: ¥600,000、Indirect Cost: ¥180,000)
Fiscal Year 2020: ¥780,000 (Direct Cost: ¥600,000、Indirect Cost: ¥180,000)
Fiscal Year 2019: ¥780,000 (Direct Cost: ¥600,000、Indirect Cost: ¥180,000)
Fiscal Year 2018: ¥780,000 (Direct Cost: ¥600,000、Indirect Cost: ¥180,000)
Keywords擬似乱数 / 代数 / 統計的検定 / xorshift / 差集合 / Difference set / association scheme / relation partition / 疑似乱数 / 代数系 / アルゴリズム / xorshift128+ / TinyMT / dynamic creator / 64 bit MT / モンテカルロ法 / 準モンテカルロ法
Outline of Final Research Achievements

1. Proposal on a test on statistical tests for pseudorandom numbers. Some statistical tests reject even good pseudorandom numbers. Often, it is due to the accumulation of errors in approximating theoretical distribution by analytic functions. We proposed a method to avoid computing the approximation error to test problematic approximation and to judge statistical tests' flaws. 2. Find a flaw in xorshift128+ generators. Because of its mixed nature, xorshift128+ is hard to analyze. We pointed out its lattice structure by approximating two-element field arithmetics by integer arithmetic. 3. Generalize the notion of difference sets from finite groups to association schemes, and give non-existence and existence results.

Academic Significance and Societal Importance of the Research Achievements

1. 擬似乱数の検定法に問題がある場合、ユーザーは全く対処のしようがない。本研究で提唱した「検定法のテスト」を用いれば、問題のある検定法の多くを発見することができ、実用上の意義は高い。2. 近年広く使われるようになったxorshift128+生成法の出力の格子構造を明らかにしたことは、こういった「統計的検定により乱数性を保証された擬似乱数」の隠された脆弱さを明らかにしたという点で意義がある。3.差集合の概念をassociation schemeに一般化することで、差集合の探索が容易になるケースがある。また、この一般化は自然で、純粋数学的に興味深い。

Report

(6 results)
  • 2022 Annual Research Report   Final Research Report ( PDF )
  • 2021 Research-status Report
  • 2020 Research-status Report
  • 2019 Research-status Report
  • 2018 Research-status Report
  • Research Products

    (3 results)

All 2022 2021 2019

All Journal Article (2 results) (of which Int'l Joint Research: 1 results,  Peer Reviewed: 2 results,  Open Access: 1 results) Presentation (1 results) (of which Int'l Joint Research: 1 results)

  • [Journal Article] Unveiling patterns in xorshift128+ pseudorandom number generators2022

    • Author(s)
      Haramoto Hiroshi、Matsumoto Makoto、Saito Mutsuo
    • Journal Title

      Journal of Computational and Applied Mathematics

      Volume: 402 Pages: 113791-113791

    • DOI

      10.1016/j.cam.2021.113791

    • Related Report
      2022 Annual Research Report 2021 Research-status Report
    • Peer Reviewed / Int'l Joint Research
  • [Journal Article] Non-existence and construction of pre-difference sets, and equi-distributed subsets in association schemes2021

    • Author(s)
      Hiroki Kajiura, Makoto Matsumoto, Takayuki Okuda
    • Journal Title

      Graphs and Combinatorics

      Volume: 37 Issue: 5 Pages: 1531-1544

    • DOI

      10.1007/s00373-021-02279-9

    • Related Report
      2020 Research-status Report
    • Peer Reviewed / Open Access
  • [Presentation] A visible flaw of xorshift128+ generators2019

    • Author(s)
      原本博史, 松本 眞
    • Organizer
      MCM2019
    • Related Report
      2019 Research-status Report
    • Int'l Joint Research

URL: 

Published: 2018-04-23   Modified: 2024-01-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi