• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

The solution of Hurwitz's problem through Galois covers of algebraic curves and study on curves on K3 surfaces

Research Project

Project/Area Number 18K03228
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeMulti-year Fund
Section一般
Review Section Basic Section 11010:Algebra-related
Research InstitutionKanagawa Institute of Technology

Principal Investigator

Komeda Jiryo  神奈川工科大学, 公私立大学の部局等, 教授 (90162065)

Project Period (FY) 2018-04-01 – 2022-03-31
Project Status Completed (Fiscal Year 2021)
Budget Amount *help
¥4,160,000 (Direct Cost: ¥3,200,000、Indirect Cost: ¥960,000)
Fiscal Year 2020: ¥1,300,000 (Direct Cost: ¥1,000,000、Indirect Cost: ¥300,000)
Fiscal Year 2019: ¥1,560,000 (Direct Cost: ¥1,200,000、Indirect Cost: ¥360,000)
Fiscal Year 2018: ¥1,300,000 (Direct Cost: ¥1,000,000、Indirect Cost: ¥300,000)
Keywords代数曲線 / ワイエルシュトラス半群 / トーリック曲面 / K3曲面 / 2重被覆 / 3重被覆 / ガロア直線 / 数値半群 / Almost symmetric 数値半群 / 二重被覆 / 代数曲線の三重被覆 / 有理楕円曲面 / Weierstrass semigroups / Numerical semigroups / Non-singular curves / K3 surfaces / Toric surfaces / Cyclic covers of curves / Triple covers of curves / Galois varieties / 三重被覆 / 平面代数曲線 / ガロア被覆 / シグマ関数
Outline of Final Research Achievements

What kinds of numerical semigroups are Weierstrass? Namely, what is the condition for a numerical semigroup to be attained by a pointed algebraic curves? This problem is called Hurwitz' Problem. We studied on this problem through the ramification points of double or triple coverings. Especially, in the case where the conductor of a numerical semigroup is fixed we constructed infinite sequences of non-Weierstrass numerical semigroups, i.e., numerical semigroups which cannot be attained by any pointed curves. We studied on pointed algebraic curves on algebraic surfaces. The research objects of the surfaces are the projective plane, toric surfaces and K3 surfaces. The Weierstrass semigroups of pointed algebraic curves on these surfaces were calculated and characterized. Moreover, we gave examples of Weierstrass numerical semigroups which cannot be attained by any pointed curves on these surfaces. Especially, the examples related to toric surfaces are the first ones.

Academic Significance and Societal Importance of the Research Achievements

代数曲線(1次元)を調べるために次元を下げて、その上の点(0次元)を調べる。そのためには、点についての情報が必要になり、それが点のワイエルシュトラス半群である。どのようなワイエルシュトラス半群を持つかで代数曲線を特徴づける。また、ワイエルシュトラス半群を点の性質を忘れて拡張した概念が数値半群である。数値半群がワイエルシュトラス半群になることの必要十分条件を見つけることで、1次元の幾何学的性質を特徴づけることができる。これらのことに関して完全に解決はしていないが、多くの研究成果は得ている。
さらに、いくつかの代数曲面(2次元)を調べるためにその上の1点付き代数曲線(1次元)も調べている。

Report

(5 results)
  • 2021 Annual Research Report   Final Research Report ( PDF )
  • 2020 Research-status Report
  • 2019 Research-status Report
  • 2018 Research-status Report
  • Research Products

    (27 results)

All 2022 2021 2020 2019 2018 Other

All Int'l Joint Research (2 results) Journal Article (14 results) (of which Int'l Joint Research: 3 results,  Peer Reviewed: 11 results,  Open Access: 1 results) Presentation (11 results) (of which Int'l Joint Research: 3 results)

  • [Int'l Joint Research] Gyeongsang National University(韓国)

    • Related Report
      2019 Research-status Report
  • [Int'l Joint Research] Gyeongsang National University(韓国)

    • Related Report
      2018 Research-status Report
  • [Journal Article] Quasi-symmetric numerical semigroups on triple covers of curves2021

    • Author(s)
      Jiryo Komeda
    • Journal Title

      RIMS Kokyuroku

      Volume: 2193 Pages: 1-5

    • NAID

      40022716076

    • Related Report
      2021 Annual Research Report
  • [Journal Article] Weierstrass n-semigroups with even n and curves on toric surfaces2021

    • Author(s)
      Jiryo Komeda
    • Journal Title

      Journal of Pure and Applied Algebra

      Volume: 225 Issue: 12 Pages: 1-23

    • DOI

      10.1016/j.jpaa.2021.106759

    • Related Report
      2021 Annual Research Report 2020 Research-status Report
    • Peer Reviewed
  • [Journal Article] Infinite sequences of almost symmetric non-Weierstrass numerical semigroups2021

    • Author(s)
      Jiryo Komeda
    • Journal Title

      Semigroup Forum

      Volume: 103 Issue: 3 Pages: 935-952

    • DOI

      10.1007/s00233-021-10230-w

    • Related Report
      2021 Annual Research Report
    • Peer Reviewed / Open Access
  • [Journal Article] The sigma function over a family of cyclic trigonal curves with a singular fiber2021

    • Author(s)
      Yuri Fedorov, Jiryo Komeda, Shigeki Matsutani, Emma Previato and Kazuhiko Aomoto
    • Journal Title

      Israel Journal of Mathematics

      Volume: -

    • Related Report
      2020 Research-status Report
    • Peer Reviewed
  • [Journal Article] Jacobi Inversion Formulae for a Curve in Weierstrass Normal Form2020

    • Author(s)
      Jiryo Komeda and Shigeki Matsutani
    • Journal Title

      London Mathematical Society, Lecture Note Series

      Volume: 459 Pages: 383404-383404

    • DOI

      10.1017/9781108773355.013

    • Related Report
      2019 Research-status Report
    • Peer Reviewed
  • [Journal Article] Weierstrass semigroups on double covers of plane curves of degree 72020

    • Author(s)
      Jiryo Komeda
    • Journal Title

      Research Reports of Kanagawa Institute of Technology Part B

      Volume: 44 Pages: 2936-2936

    • NAID

      120006875555

    • Related Report
      2019 Research-status Report
    • Peer Reviewed
  • [Journal Article] Curves on weighted K3 surfaces of degree two with symmetric Weierstrass semigroups2019

    • Author(s)
      Jiryo Komeda and Makiko Mase
    • Journal Title

      Tsukuba Journal of Mathematics

      Volume: 43 Issue: 1 Pages: 5569-5569

    • DOI

      10.21099/tkbjm/1571968821

    • Related Report
      2019 Research-status Report
    • Peer Reviewed
  • [Journal Article] Double covers of plane curves of degree six with almost total flexes2019

    • Author(s)
      Seon Jeong Kim and Jiryo Komeda
    • Journal Title

      Bulletin of the Korean Mathematical Society

      Volume: 56 Pages: 11591186-11591186

    • Related Report
      2019 Research-status Report
    • Peer Reviewed / Int'l Joint Research
  • [Journal Article] Infinite sequences of non-Weierstrass numerical semigroups with odd conductor2019

    • Author(s)
      Jiryo Komeda
    • Journal Title

      RIMS講究録

      Volume: 2130 Pages: 5256-5256

    • NAID

      120006888040

    • Related Report
      2019 Research-status Report
  • [Journal Article] Weierstrass semigroups satisfying the MP equalities and curves on toric surfaces2019

    • Author(s)
      Ryo Kawaguchi and Jiryo Komeda
    • Journal Title

      Bulletin of the Brazilian Mathematical Society, New Series

      Volume: 印刷中 Issue: 1 Pages: 107123-107123

    • DOI

      10.1007/s00574-019-00145-0

    • Related Report
      2019 Research-status Report 2018 Research-status Report
    • Peer Reviewed
  • [Journal Article] Non-Weierstrass numerical semigroups with high conductor2019

    • Author(s)
      Jiryo Komeda
    • Journal Title

      Research Reports of Kanagawa Institute of Technology

      Volume: B-43 Pages: 3943-3943

    • Related Report
      2018 Research-status Report
    • Peer Reviewed
  • [Journal Article] The sigma function for trigonal cyclic curves2019

    • Author(s)
      Jiryo Komeda, Shigeki Matsutani and Emma Previato
    • Journal Title

      Lett. Math. Phys.

      Volume: 109 Issue: 2 Pages: 423447-423447

    • DOI

      10.1007/s11005-018-1116-6

    • Related Report
      2018 Research-status Report
    • Peer Reviewed / Int'l Joint Research
  • [Journal Article] Double covers of plane curves of degree six with almost total flexes2019

    • Author(s)
      Seon Jeong Kim and Jiryo Komeda
    • Journal Title

      Bull. Korean Math. Soc.

      Volume: 印刷中

    • Related Report
      2018 Research-status Report
    • Peer Reviewed / Int'l Joint Research
  • [Journal Article] Diagrams of numerical semigroups whose general members are non-Weierstrass2018

    • Author(s)
      Jiryo Komeda
    • Journal Title

      RIMS Kokuroku

      Volume: 2096 Pages: 5458-5458

    • Related Report
      2018 Research-status Report
  • [Presentation] On Weierstrass numerical semigroups generated by four elements2022

    • Author(s)
      Jiryo Komeda
    • Organizer
      京都大学数理解析研究所RIMS共同研究(公開型)「論理・代数系・言語と計算機科学の周辺領域」
    • Related Report
      2021 Annual Research Report
    • Int'l Joint Research
  • [Presentation] Quasi-symmetric numerical semigroups on triple covers of curves2021

    • Author(s)
      Jiryo Komeda
    • Organizer
      RIMS Workshop"Logic, Language, Algebraic system and Related Areas in Computer Science
    • Related Report
      2020 Research-status Report
    • Int'l Joint Research
  • [Presentation] Weierstrass semigroups on double covers of plane curves of degree 72020

    • Author(s)
      Jiryo Komeda
    • Organizer
      Workshop "Algebraic system, Logic, Language and Related Areas in Computer Science II"
    • Related Report
      2019 Research-status Report
  • [Presentation] Weierstrass semigrops which cannot be realized as semigroups of pointed curves on toric surfaces2020

    • Author(s)
      Jiryo Komeda
    • Organizer
      形式言語とオートマトン研究会
    • Related Report
      2019 Research-status Report
  • [Presentation] Hurwitz's problem concerning almost symmetric numerical semigroups generated by 4 elements2019

    • Author(s)
      Jiryo Komeda
    • Organizer
      形式言語とオートマトン研究会
    • Related Report
      2019 Research-status Report
  • [Presentation] Curves on weighted K3 surfaces of degree two with symmetric Weierstrass semigroups2019

    • Author(s)
      Jiryo Komeda
    • Organizer
      特異点論月曜セミナー
    • Related Report
      2019 Research-status Report
  • [Presentation] Infinite sequences of non-Weierstrass numerical semigroups with odd conductor2019

    • Author(s)
      Jiryo Komeda
    • Organizer
      RIMS Workshop "Algebraic system, Logic, Language and Related Areas in Computer Science"
    • Related Report
      2018 Research-status Report
  • [Presentation] Numerical semigroups of double covering type and tetragonal curves2018

    • Author(s)
      米田ニ良
    • Organizer
      形式言語とオートマトン研究会
    • Related Report
      2018 Research-status Report
  • [Presentation] The quotient of a numerical semigroup with high conductor by two or three2018

    • Author(s)
      Jiryo Komeda
    • Organizer
      DLT Satellite Workshop in Kyoto
    • Related Report
      2018 Research-status Report
    • Int'l Joint Research
  • [Presentation] Jacobi inversion formulae for a compact Riemann surface via Weierstrass form2018

    • Author(s)
      松谷茂樹、米田ニ良
    • Organizer
      日本数学会秋季総合分科会
    • Related Report
      2018 Research-status Report
  • [Presentation] On σ function for the curve, y^3=x(x-s)(x-b_1)(x-b_2) and its limit of s ->02018

    • Author(s)
      松谷茂樹、米田ニ良、Emma Previato
    • Organizer
      日本数学会秋季総合分科会
    • Related Report
      2018 Research-status Report

URL: 

Published: 2018-04-23   Modified: 2023-03-16  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi