• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Asymptotic formula of Hecke eigenvalues and research of Arthur trace formula

Research Project

Project/Area Number 18K03235
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeMulti-year Fund
Section一般
Review Section Basic Section 11010:Algebra-related
Research InstitutionKanazawa University

Principal Investigator

Wakatsuki Satoshi  金沢大学, 数物科学系, 教授 (10432121)

Co-Investigator(Kenkyū-buntansha) 都築 正男  上智大学, 理工学部, 教授 (80296946)
Project Period (FY) 2018-04-01 – 2022-03-31
Project Status Discontinued (Fiscal Year 2021)
Budget Amount *help
¥4,030,000 (Direct Cost: ¥3,100,000、Indirect Cost: ¥930,000)
Fiscal Year 2021: ¥780,000 (Direct Cost: ¥600,000、Indirect Cost: ¥180,000)
Fiscal Year 2020: ¥780,000 (Direct Cost: ¥600,000、Indirect Cost: ¥180,000)
Fiscal Year 2019: ¥1,040,000 (Direct Cost: ¥800,000、Indirect Cost: ¥240,000)
Fiscal Year 2018: ¥1,430,000 (Direct Cost: ¥1,100,000、Indirect Cost: ¥330,000)
Keywords数論 / 保型形式 / 跡公式 / ヘッケ固有値 / 整数論 / 代数学
Outline of Final Research Achievements

In this research, we studied Hecke eigenvalues of automorphic forms in number theory. Number theory is a field that studies various properties of natural numbers and primes, automorphic forms are mysterious functions which have high symmetry, and their Hecke eigenvalues are sequences of numbers which naturally arise from them. Hecke eigenvalues have very interesting number-theoretic properties, and a classical example of Hecke eigenvalues is Ramanujan's tau function. A major result of our research is that we have succeeded to prove various results on the distributions of their eigenvalues by considering natural families of automorphic forms.

Academic Significance and Societal Importance of the Research Achievements

保型形式の族のヘッケ固有値の分布はプランシュレル測度や佐藤-テイト測度に従うことが予想されており、様々な場合に証明されている。ヘッケ固有値の漸近公式の一般化と精密化を推進することで、ヘッケ固有値の分布の性質をより統一的に明らかにすることが本研究の目的であった。実際、本研究の成果によって、その一般化と精密化の両方についてヘッケ固有値の漸近公式の研究を大きく進展させることができた。

Report

(4 results)
  • 2021 Final Research Report ( PDF )
  • 2020 Annual Research Report
  • 2019 Research-status Report
  • 2018 Research-status Report
  • Research Products

    (16 results)

All 2020 2019 2018 Other

All Int'l Joint Research (4 results) Journal Article (5 results) (of which Int'l Joint Research: 4 results,  Peer Reviewed: 5 results) Presentation (6 results) (of which Int'l Joint Research: 2 results,  Invited: 6 results) Remarks (1 results)

  • [Int'l Joint Research] Bielefeld University/Leipzig University/Marburg University(ドイツ)

    • Related Report
      2020 Annual Research Report
  • [Int'l Joint Research] University of Toronto(カナダ)

    • Related Report
      2020 Annual Research Report
  • [Int'l Joint Research] Bielefeld University/Leipzig University/Marburg University(ドイツ)

    • Related Report
      2019 Research-status Report
  • [Int'l Joint Research] Bielefeld University/Leipzig University/Marburg University(ドイツ)

    • Related Report
      2018 Research-status Report
  • [Journal Article] Equidistribution theorems for holomorphic Siegel modular forms for $$GSp_4$$; Hecke fields and n-level density2020

    • Author(s)
      Kim Henry H.、Wakatsuki Satoshi、Yamauchi Takuya
    • Journal Title

      Mathematische Zeitschrift

      Volume: 295 Issue: 3-4 Pages: 917-943

    • DOI

      10.1007/s00209-019-02378-7

    • Related Report
      2020 Annual Research Report
    • Peer Reviewed / Int'l Joint Research
  • [Journal Article] An equidistribution theorem for holomorphic Siegel modular forms for GSp_42018

    • Author(s)
      Henry H. Kim, S. Wakatsuki and T. Yamauchi
    • Journal Title

      Journal of the Institute of Mathematics of Jussieu

      Volume: 未定 Issue: 2 Pages: 351-419

    • DOI

      10.1017/s147474801800004x

    • Related Report
      2019 Research-status Report
    • Peer Reviewed / Int'l Joint Research
  • [Journal Article] The dimensions of spaces of Siegel cusp forms of general degree2018

    • Author(s)
      Wakatsuki Satoshi
    • Journal Title

      Advances in Mathematics

      Volume: 340 Pages: 1012-1066

    • DOI

      10.1016/j.aim.2018.10.028

    • Related Report
      2018 Research-status Report
    • Peer Reviewed
  • [Journal Article] On the Geometric Side of the Arthur Trace Formula for the Symplectic Group of Rank 22018

    • Author(s)
      Hoffmann Werner、Wakatsuki Satoshi
    • Journal Title

      Memoirs of the American Mathematical Society

      Volume: 255 Issue: 1224 Pages: 1-88

    • DOI

      10.1090/memo/1224

    • Related Report
      2018 Research-status Report
    • Peer Reviewed / Int'l Joint Research
  • [Journal Article] The Subregular Unipotent Contribution to the Geometric Side of the Arthur Trace Formula for the Split Exceptional Group G_22018

    • Author(s)
      Finis Tobias、Hoffmann Werner、Wakatsuki Satoshi
    • Journal Title

      Geometric Aspects of the Trace Formula

      Volume: 1 Pages: 163-182

    • DOI

      10.1007/978-3-319-94833-1_5

    • ISBN
      9783319948324, 9783319948331
    • Related Report
      2018 Research-status Report
    • Peer Reviewed / Int'l Joint Research
  • [Presentation] Zeta functions and nonvanishing theorems for toric periods on GL_22020

    • Author(s)
      若槻 聡
    • Organizer
      第7回京都保型形式研究集会
    • Related Report
      2020 Annual Research Report
    • Invited
  • [Presentation] 新谷の二重ゼータ関数2019

    • Author(s)
      若槻 聡
    • Organizer
      数論合同セミナー 京都大学数学教室
    • Related Report
      2019 Research-status Report
    • Invited
  • [Presentation] コンパクトな算術商上のヘッケ固有値の漸近分布2018

    • Author(s)
      若槻 聡
    • Organizer
      RIMS共同研究(公開型)「表現論と代数、幾何、解析をめぐる諸問題」
    • Related Report
      2018 Research-status Report
    • Invited
  • [Presentation] Asymptotic distribution of Hecke eigenvalues on compact arithmetic quotients2018

    • Author(s)
      若槻 聡
    • Organizer
      Pan Asia Number Theory Conference 2018
    • Related Report
      2018 Research-status Report
    • Int'l Joint Research / Invited
  • [Presentation] Dimension formula and Shintani zeta functions (I), (II)2018

    • Author(s)
      若槻 聡
    • Organizer
      第21回白馬整数論オータムワークショップ「Hilbert-Siegel保型形式とその周辺」
    • Related Report
      2018 Research-status Report
    • Int'l Joint Research / Invited
  • [Presentation] 新谷の二重ゼータ関数2018

    • Author(s)
      若槻 聡
    • Organizer
      代数学セミナー, 東北大学
    • Related Report
      2018 Research-status Report
    • Invited
  • [Remarks] 研究者のホームページ

    • URL

      http://wakatsuki.w3.kanazawa-u.ac.jp/index.html

    • Related Report
      2020 Annual Research Report 2019 Research-status Report 2018 Research-status Report

URL: 

Published: 2018-04-23   Modified: 2023-01-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi