• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

A study on zeta functions of graphs via harmonic analysis and its applications

Research Project

Project/Area Number 18K03242
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeMulti-year Fund
Section一般
Review Section Basic Section 11010:Algebra-related
Research InstitutionEhime University

Principal Investigator

Yamasaki Yoshinori  愛媛大学, 理工学研究科(理学系), 教授 (00533035)

Project Period (FY) 2018-04-01 – 2022-03-31
Project Status Completed (Fiscal Year 2021)
Budget Amount *help
¥3,900,000 (Direct Cost: ¥3,000,000、Indirect Cost: ¥900,000)
Fiscal Year 2020: ¥1,170,000 (Direct Cost: ¥900,000、Indirect Cost: ¥270,000)
Fiscal Year 2019: ¥1,170,000 (Direct Cost: ¥900,000、Indirect Cost: ¥270,000)
Fiscal Year 2018: ¥1,560,000 (Direct Cost: ¥1,200,000、Indirect Cost: ¥360,000)
KeywordsIharaゼータ関数 / Ramanujanグラフ / 四元数環 / Ramanujan グラフ / Ihara ゼータ関数 / 多重ゼータ関数 / ゼータ関数 / ラプラシアン / 熱核
Outline of Final Research Achievements

For each finite graph, we have the associated Ihara zeta function from which we can know various properties of the underlying graph. In this study, we first tried to construct new family of Ramanujan graphs which are important from the viewpoint of applications and characterized by the fact that the associated Ihara zeta function satisfies an analogue of the Riemann hypothesis. Specifically, we constructed graphs via quaternion algebras and their orders, and showed that, in some special cases, they are actually Ramanujan. Moreover, we also studied the logarithmic derivative of Ihara zeta function with a representation of the fundamental group and, in some special cases, explicitly calculated the Taylor coefficients at the origin of that, which reflect various features of the underlying graph such as "complexity".

Academic Significance and Societal Importance of the Research Achievements

Ramanujanグラフは、ハッシュ関数の構成など現在暗号理論の分野においても応用が著しい。それゆえ本研究で構成したRamanujanグラフは実社会での活用に直結する可能性が期待できる。また、本グラフはパラメータ付きで構成されているため、必要に応じて適宜パラメータを調整して利用できる点も利点の一つであると考えられる。また、Iharaゼータ関数の対数微分の研究は、グラフ理論とゼータ関数論の境界領域に位置するあまり前例がない研究であるため、特別な場合ではあるがここで一般論を整理・展開できたことは、両者の境界領域のすそ野を広げるという意味でも非常に有意義であると考えられる。

Report

(5 results)
  • 2021 Annual Research Report   Final Research Report ( PDF )
  • 2020 Research-status Report
  • 2019 Research-status Report
  • 2018 Research-status Report
  • Research Products

    (11 results)

All 2020 2019 2018 Other

All Int'l Joint Research (3 results) Journal Article (3 results) (of which Peer Reviewed: 3 results) Presentation (5 results) (of which Invited: 3 results)

  • [Int'l Joint Research] ニューヨーク市立大学シティカ レッジ(米国)

    • Related Report
      2020 Research-status Report
  • [Int'l Joint Research] ニューヨーク市立大学シティカ レッジ(米国)

    • Related Report
      2019 Research-status Report
  • [Int'l Joint Research] ニューヨーク市立大学シティカ レッジ(米国)

    • Related Report
      2018 Research-status Report
  • [Journal Article] Ramanujan graphs for post-quantum cryptography2020

    • Author(s)
      Hyungrok Jo, Shingo Sugiyama and Yoshinori Yamasaki
    • Journal Title

      International Symposium on Mathematics, Quantum Theory, and Cryptography (MQC 2019), Math. Ind.

      Volume: -

    • Related Report
      2019 Research-status Report
    • Peer Reviewed
  • [Journal Article] On Schur multiple zeta functions: A combinatoric generalization of multiple zeta functions2018

    • Author(s)
      Maki Nakasuji, Ouamporn Phuksuwan and Yoshinori Yamasaki
    • Journal Title

      Adv. Math.

      Volume: 333 Pages: 570-619

    • DOI

      10.1016/j.aim.2018.05.014

    • Related Report
      2018 Research-status Report
    • Peer Reviewed
  • [Journal Article] LPS-type Ramanujan Graphs2018

    • Author(s)
      Hyungrok Jo and Yoshinori Yamasaki
    • Journal Title

      2018 International Symposium on Information Theory and Its Applications (ISITA)

      Volume: - Pages: 399-403

    • DOI

      10.23919/isita.2018.8664284

    • Related Report
      2018 Research-status Report
    • Peer Reviewed
  • [Presentation] Non-commutative matrix forests theorem2019

    • Author(s)
      山崎義徳
    • Organizer
      CREST暗号数理2019年度第2回全体会議
    • Related Report
      2019 Research-status Report
  • [Presentation] Some topics on Schur multiple zeta functions2018

    • Author(s)
      山崎義徳
    • Organizer
      第40回関西多重ゼータ研究会
    • Related Report
      2018 Research-status Report
    • Invited
  • [Presentation] Schur 多重ゼータ関数について2018

    • Author(s)
      山崎義徳
    • Organizer
      2018年度日本数学会秋季総合分科会 (代数学・特別講演)
    • Related Report
      2018 Research-status Report
    • Invited
  • [Presentation] Schur 多重ゼータ値に関する 1-3 公式について2018

    • Author(s)
      山崎義徳
    • Organizer
      2018大分鹿児島整数論研究集会
    • Related Report
      2018 Research-status Report
    • Invited
  • [Presentation] Dualities and sum formulas for Schur multiple zeta values of ribbon type2018

    • Author(s)
      山崎義徳
    • Organizer
      Zeta Functions in OKINAWA 2018
    • Related Report
      2018 Research-status Report

URL: 

Published: 2018-04-23   Modified: 2023-01-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi