• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Study on exponential Diophantine equations related to Jesmanowicz' conjecture

Research Project

Project/Area Number 18K03247
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeMulti-year Fund
Section一般
Review Section Basic Section 11010:Algebra-related
Research InstitutionOita University

Principal Investigator

Terai Nobuhiro  大分大学, 理工学部, 教授 (00236978)

Project Period (FY) 2018-04-01 – 2023-03-31
Project Status Completed (Fiscal Year 2022)
Budget Amount *help
¥4,030,000 (Direct Cost: ¥3,100,000、Indirect Cost: ¥930,000)
Fiscal Year 2020: ¥1,170,000 (Direct Cost: ¥900,000、Indirect Cost: ¥270,000)
Fiscal Year 2019: ¥1,300,000 (Direct Cost: ¥1,000,000、Indirect Cost: ¥300,000)
Fiscal Year 2018: ¥1,560,000 (Direct Cost: ¥1,200,000、Indirect Cost: ¥360,000)
KeywordsJesmanowicz予想 / 指数型不定方程式 / Ramanujan-Nagell方程式 / 一般化されたFermat方程式 / 整数解 / Baker理論 / 楕円曲線
Outline of Final Research Achievements

Our purpose of this research is to determine all integer solutions of the following three exponential Diophantine equations: (1) a^x + b^y = c^z with
a^2+b^2=c^2, (2) a^x + b^y = c^z with a^p+b^q=c^r, (3) x^2+b^m=c^n with a^2+b^2=c^2 and b even. Our strategy is based on elementary methods, Baker theory, and deep results on generalized Ramanujan-Nagell equations and Fermat equations.

Academic Significance and Societal Importance of the Research Achievements

Jesmanowicz予想と関係する指数型不定方程式 a^x + b^y = c^z(ここでa^p + b^q = c^r)や一般化されたRamanujan-Nagell方程式 x^2+b^m=c^n (ここでa^2+b^2=c^r)の整数解について, いくつかの条件の下でいろいろな場合に決定することができた. また, 類数・線形数列・楕円曲線を用いて, 指数型不定方程式の整数解に関する興味深い予想を提示でき, 今後の指数型不定方程式の研究に有意義となるものである.

Report

(6 results)
  • 2022 Annual Research Report   Final Research Report ( PDF )
  • 2021 Research-status Report
  • 2020 Research-status Report
  • 2019 Research-status Report
  • 2018 Research-status Report
  • Research Products

    (26 results)

All 2023 2022 2021 2020 2019 2018

All Journal Article (9 results) (of which Peer Reviewed: 9 results,  Open Access: 3 results) Presentation (12 results) (of which Invited: 12 results) Funded Workshop (5 results)

  • [Journal Article] On the generalized Ramanujan-Nagell equation x^2 + (4c)^m = (c + 1)^n2022

    • Author(s)
      Nobuhiro Terai, Saya Nakashiki and Yudai Suenaga
    • Journal Title

      International Mathematical Forum

      Volume: 17 Issue: 1 Pages: 1-10

    • DOI

      10.12988/imf.2022.912300

    • Related Report
      2022 Annual Research Report
    • Peer Reviewed / Open Access
  • [Journal Article] On the Diophantine equation x^2 + b^m = c^n with a^2 + b^4 = c^22022

    • Author(s)
      Nobuhiro Terai
    • Journal Title

      Indian Journal of Pure and Applied Mathematics

      Volume: 53 Issue: 1 Pages: 162-169

    • DOI

      10.1007/s13226-021-00162-0

    • Related Report
      2022 Annual Research Report
    • Peer Reviewed
  • [Journal Article] On the generalized Ramanujan-Nagell equation x^2+b^m=c^n with a^2+b^r=c^22022

    • Author(s)
      Nobuhiro Terai, Saya Nakashiki and Yudai Suenaga
    • Journal Title

      SUT Journal of Mathematics

      Volume: 58 Issue: 1 Pages: 77-89

    • DOI

      10.55937/sut/1654320039

    • Related Report
      2022 Annual Research Report
    • Peer Reviewed / Open Access
  • [Journal Article] A purely exponential Diophantine equation in three unknowns2021

    • Author(s)
      Miyazaki Takafumi、Sudo Masaki、Terai Nobuhiro
    • Journal Title

      Periodica Mathematica Hungarica

      Volume: 84 Issue: 2 Pages: 287-298

    • DOI

      10.1007/s10998-021-00405-x

    • Related Report
      2022 Annual Research Report
    • Peer Reviewed
  • [Journal Article] On the exponential Diophantine equation (4m^2 + 1)^x + (45m^2 - 1)^y = (7m)^z,2021

    • Author(s)
      Nobuhiro Terai and Yoshiki Shinsho
    • Journal Title

      Int. J. Algebra

      Volume: 15 Issue: 4 Pages: 233-241

    • DOI

      10.12988/ija.2021.91567

    • Related Report
      2021 Research-status Report
    • Peer Reviewed / Open Access
  • [Journal Article] On the generalized Ramanujan-Nagell equation x^2 + (2c - 1)^m = c^n2020

    • Author(s)
      Yasutsugu Fujita, Nobuhiro Terai
    • Journal Title

      Acta Math. Hungar.

      Volume: 162 Issue: 2 Pages: 518-526

    • DOI

      10.1007/s10474-020-01085-8

    • Related Report
      2020 Research-status Report
    • Peer Reviewed
  • [Journal Article] On the exponential Diophantine equation (4m^2 + 1)^x + (21m^2 - 1)^y = (5m)^z2020

    • Author(s)
      Nobuhiro Terai
    • Journal Title

      Annales Mathematicae et Informaticae

      Volume: 52 Pages: 243-253

    • DOI

      10.33039/ami.2020.01.003

    • Related Report
      2020 Research-status Report
    • Peer Reviewed
  • [Journal Article] On the exponential Diophantine equation (3m^2 + 1)^x + (qm^2 - 1)^y = (rm)^z2020

    • Author(s)
      Nobuhiro Terai, Yoshiki Shinsho
    • Journal Title

      SUT J. Math.

      Volume: 56 Pages: 147-158

    • Related Report
      2020 Research-status Report
    • Peer Reviewed
  • [Journal Article] A study on the exponential Diophantine equation a^x + (a + b)^y = b^z2019

    • Author(s)
      Takafumi Miyazaki, Nobuhiro Terai
    • Journal Title

      Publ. Math. Debrecen

      Volume: 95 Issue: 1-2 Pages: 19-37

    • DOI

      10.5486/pmd.2019.8283

    • Related Report
      2019 Research-status Report
    • Peer Reviewed
  • [Presentation] ラマヌジャンのタクシー数 1729 に関する不定方程式2023

    • Author(s)
      寺井 伸浩
    • Organizer
      数理情報科学さくらセミナー2023(於 鹿児島大学理学部)
    • Related Report
      2022 Annual Research Report
    • Invited
  • [Presentation] ラマヌジャンのタクシー数1729 の不思議.2021

    • Author(s)
      寺井 伸浩
    • Organizer
      数理情報科学さくらセミナー2021 (於鹿児島大学理学部+Zoomによるオンライン開催)
    • Related Report
      2021 Research-status Report
    • Invited
  • [Presentation] On the generalized Ramanujan-Nagell equation x^2 + (c^2 - 1)^m = c^n2021

    • Author(s)
      寺井伸浩
    • Organizer
      第144 回日本数学会九州支部例会
    • Related Report
      2020 Research-status Report
    • Invited
  • [Presentation] ラマヌジャンを楽しむ - 指数型不定方程式の不思議な世界2021

    • Author(s)
      寺井伸浩
    • Organizer
      数理情報科学さくらセミナー2021 (於鹿児島大学理学部+Zoomによるオンライン開催)
    • Related Report
      2020 Research-status Report
    • Invited
  • [Presentation] 約数関数σ(n) とオイラー関数φ(n) を含む不定方程式の整数解について2020

    • Author(s)
      寺井伸浩
    • Organizer
      日本応用数理学会第16 回研究部会連合発表会(於 中央大後楽園キャンパス)
    • Related Report
      2019 Research-status Report
    • Invited
  • [Presentation] 指数型不定方程式 a^x + b^y = c^z について2019

    • Author(s)
      寺井伸浩
    • Organizer
      松江数論セミナー
    • Related Report
      2019 Research-status Report
    • Invited
  • [Presentation] 指数型不定方程式 a^x + b^y = c^z と x^2 + b^m = c^n の最近の進展について2019

    • Author(s)
      寺井伸浩
    • Organizer
      第64 回代数学シンポジウム (於 東北大学大学院情報科学研究科棟)
    • Related Report
      2019 Research-status Report
    • Invited
  • [Presentation] ピタゴラスから拡がる指数型不定方程式の世界2019

    • Author(s)
      寺井伸浩
    • Organizer
      数理情報科学さくらセミナー2019
    • Related Report
      2018 Research-status Report
    • Invited
  • [Presentation] On the Diophantine equation x^2+b^m=c^n with a^2+b^4=c^22019

    • Author(s)
      寺井伸浩
    • Organizer
      大分数論セミナー
    • Related Report
      2018 Research-status Report
    • Invited
  • [Presentation] 階乗と冪を含む不定方程式について2018

    • Author(s)
      寺井伸浩
    • Organizer
      北陸数論セミナー
    • Related Report
      2018 Research-status Report
    • Invited
  • [Presentation] 指数型不定方程式 (3pm^2-1)^x+(p(p-3)m^2+1)^y=(pm)^z について2018

    • Author(s)
      寺井伸浩
    • Organizer
      第139回日本数学会九州支部例会
    • Related Report
      2018 Research-status Report
    • Invited
  • [Presentation] On the generalized Ramanujan-Nagell equation x^2 + (2c-1)^m = c^n2018

    • Author(s)
      寺井伸浩
    • Organizer
      群大桐生数論セミナー
    • Related Report
      2018 Research-status Report
    • Invited
  • [Funded Workshop] 2022大分熊本整数論研究集会2022

    • Related Report
      2022 Annual Research Report
  • [Funded Workshop] 2021 大分整数論研究集会 (Zoomによるオンライン開催)2021

    • Related Report
      2021 Research-status Report
  • [Funded Workshop] 2020 大分整数論研究集会 (Zoomによるオンライン開催)2020

    • Related Report
      2020 Research-status Report
  • [Funded Workshop] 2019 大分佐賀整数論研究集会2019

    • Related Report
      2019 Research-status Report
  • [Funded Workshop] 2018大分鹿児島整数論研究集会2018

    • Related Report
      2018 Research-status Report

URL: 

Published: 2018-04-23   Modified: 2024-01-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi