Project/Area Number |
18K03247
|
Research Category |
Grant-in-Aid for Scientific Research (C)
|
Allocation Type | Multi-year Fund |
Section | 一般 |
Review Section |
Basic Section 11010:Algebra-related
|
Research Institution | Oita University |
Principal Investigator |
|
Project Period (FY) |
2018-04-01 – 2023-03-31
|
Project Status |
Completed (Fiscal Year 2022)
|
Budget Amount *help |
¥4,030,000 (Direct Cost: ¥3,100,000、Indirect Cost: ¥930,000)
Fiscal Year 2020: ¥1,170,000 (Direct Cost: ¥900,000、Indirect Cost: ¥270,000)
Fiscal Year 2019: ¥1,300,000 (Direct Cost: ¥1,000,000、Indirect Cost: ¥300,000)
Fiscal Year 2018: ¥1,560,000 (Direct Cost: ¥1,200,000、Indirect Cost: ¥360,000)
|
Keywords | Jesmanowicz予想 / 指数型不定方程式 / Ramanujan-Nagell方程式 / 一般化されたFermat方程式 / 整数解 / Baker理論 / 楕円曲線 |
Outline of Final Research Achievements |
Our purpose of this research is to determine all integer solutions of the following three exponential Diophantine equations: (1) a^x + b^y = c^z with a^2+b^2=c^2, (2) a^x + b^y = c^z with a^p+b^q=c^r, (3) x^2+b^m=c^n with a^2+b^2=c^2 and b even. Our strategy is based on elementary methods, Baker theory, and deep results on generalized Ramanujan-Nagell equations and Fermat equations.
|
Academic Significance and Societal Importance of the Research Achievements |
Jesmanowicz予想と関係する指数型不定方程式 a^x + b^y = c^z(ここでa^p + b^q = c^r)や一般化されたRamanujan-Nagell方程式 x^2+b^m=c^n (ここでa^2+b^2=c^r)の整数解について, いくつかの条件の下でいろいろな場合に決定することができた. また, 類数・線形数列・楕円曲線を用いて, 指数型不定方程式の整数解に関する興味深い予想を提示でき, 今後の指数型不定方程式の研究に有意義となるものである.
|