• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Research of the autoequivalence groups of derived categories of algebraic varieties

Research Project

Project/Area Number 18K03249
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeMulti-year Fund
Section一般
Review Section Basic Section 11010:Algebra-related
Research InstitutionTokyo Metropolitan University

Principal Investigator

Uehara Hokuto  東京都立大学, 理学研究科, 教授 (80378546)

Project Period (FY) 2018-04-01 – 2023-03-31
Project Status Completed (Fiscal Year 2022)
Budget Amount *help
¥4,550,000 (Direct Cost: ¥3,500,000、Indirect Cost: ¥1,050,000)
Fiscal Year 2022: ¥910,000 (Direct Cost: ¥700,000、Indirect Cost: ¥210,000)
Fiscal Year 2021: ¥910,000 (Direct Cost: ¥700,000、Indirect Cost: ¥210,000)
Fiscal Year 2020: ¥910,000 (Direct Cost: ¥700,000、Indirect Cost: ¥210,000)
Fiscal Year 2019: ¥910,000 (Direct Cost: ¥700,000、Indirect Cost: ¥210,000)
Fiscal Year 2018: ¥910,000 (Direct Cost: ¥700,000、Indirect Cost: ¥210,000)
Keywords連接層の導来圏 / 代数多様体の分類理論 / 楕円曲面 / Enriques曲面 / 自己同値群 / 三角圏 / 代数曲面 / 導来圏
Outline of Final Research Achievements

I studied the derived category of coherent sheaves on algebraic varieties. In particluar, (i) I studied exceptional twists on Enriques surfaces, which is a subspecies of a well-known autoequivalence "spherical twists", (ii) we obtain a solution of Bondal-Polishchuk conjecture for a Hirzebruch surface containg a (-2)-curve, and (iii) I studies Fourier-Mukai partners of elliptic ruled surfaces over arbitrary characteristic fields. In (ii), an affirmative answer for Bondal-Polischuk conjecture was known for del Pezzo surfaces, but we show that it is true for a Hirzebruch surface containg a (-2)-curve, which is an exampe of weak del Pezzo surface.

Academic Significance and Societal Importance of the Research Achievements

連接層の導来圏は代数多様体の重要な不変量として知られており、多元環の表現論、ホモロジカルミラー対称性、代数多様体の分類理論など、広い分野と関係する興味深い研究対象である。連接層の導来圏の研究は、ここ20年で代数幾何学の研究テーマとしても、かなり大きな部分を占めるようになってきたといえる。私は特に、与えれた代数多様体の導来圏の生成元である例外生成列や、導来圏の自己同値群に関して興味を持って調べてきた。これらは、連接層の導来圏の研究の中でも、かなりメジャーなトピックと言え、今後様々な研究に広がっていくと思われる。

Report

(6 results)
  • 2022 Annual Research Report   Final Research Report ( PDF )
  • 2021 Research-status Report
  • 2020 Research-status Report
  • 2019 Research-status Report
  • 2018 Research-status Report
  • Research Products

    (7 results)

All 2023 2022 2020 2019 2018

All Journal Article (1 results) (of which Int'l Joint Research: 1 results,  Peer Reviewed: 1 results) Presentation (5 results) (of which Int'l Joint Research: 2 results,  Invited: 5 results) Book (1 results)

  • [Journal Article] A trichotomy for the autoequivalence groups on smooth projective surfaces2019

    • Author(s)
      Hokuto Uehara
    • Journal Title

      Trans. Amer. Math. Soc.

      Volume: 371 Issue: 5 Pages: 3529-3547

    • DOI

      10.1090/tran/7439

    • Related Report
      2018 Research-status Report
    • Peer Reviewed / Int'l Joint Research
  • [Presentation] Elliptic ruled surfaces over arbitrary characteristic fields2023

    • Author(s)
      Hokuto Uehara
    • Organizer
      正標数体上の代数多様体、および連接層の導来圏に関するミニワークショップ
    • Related Report
      2022 Annual Research Report
    • Invited
  • [Presentation] Exceptional twists and Spherical twists on Enriques surfaces2022

    • Author(s)
      Hokuto Uehara
    • Organizer
      代数・解析・幾何セミナー
    • Related Report
      2021 Research-status Report
    • Invited
  • [Presentation] Exceptional collectons on the Hirzebruch surface of degree 22020

    • Author(s)
      Hokuto Uehara
    • Organizer
      ZAG seminar
    • Related Report
      2020 Research-status Report
    • Int'l Joint Research / Invited
  • [Presentation] Exceptional collections on Hirzebruch surface of degree 22019

    • Author(s)
      Hokuto Uehara
    • Organizer
      都の西北代数幾何学シンポジウム
    • Related Report
      2019 Research-status Report
    • Invited
  • [Presentation] Spherical objects on D_n-singuliarities2018

    • Author(s)
      Hokuto Uehara
    • Organizer
      3rd Japanese-European Symposium on Symplectic varieties and Moduli spaces
    • Related Report
      2018 Research-status Report
    • Int'l Joint Research / Invited
  • [Book] 連接層の導来圏と代数幾何学2020

    • Author(s)
      上原 北斗、戸田 幸伸
    • Total Pages
      496
    • Publisher
      丸善出版
    • ISBN
      9784621305911
    • Related Report
      2020 Research-status Report

URL: 

Published: 2018-04-23   Modified: 2024-01-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi