• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

On quasihereditary covers and functors

Research Project

Project/Area Number 18K03250
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeMulti-year Fund
Section一般
Review Section Basic Section 11010:Algebra-related
Research InstitutionOsaka Metropolitan University (2022-2023)
Osaka City University (2018-2021)

Principal Investigator

Miyachi Hyohe  大阪公立大学, 大学院理学研究科, 教授 (90362227)

Project Period (FY) 2018-04-01 – 2024-03-31
Project Status Completed (Fiscal Year 2023)
Budget Amount *help
¥4,420,000 (Direct Cost: ¥3,400,000、Indirect Cost: ¥1,020,000)
Fiscal Year 2022: ¥780,000 (Direct Cost: ¥600,000、Indirect Cost: ¥180,000)
Fiscal Year 2021: ¥910,000 (Direct Cost: ¥700,000、Indirect Cost: ¥210,000)
Fiscal Year 2020: ¥910,000 (Direct Cost: ¥700,000、Indirect Cost: ¥210,000)
Fiscal Year 2019: ¥910,000 (Direct Cost: ¥700,000、Indirect Cost: ¥210,000)
Fiscal Year 2018: ¥910,000 (Direct Cost: ¥700,000、Indirect Cost: ¥210,000)
Keywords表現論 / Hecke / Kazhdan-Lusztig / quantum / 結晶基底 / 箙Hecke代数 / Hecke algebras / Kazhdan-Lusztig cells / Reciprocity / Kazhdan-Lusztig理論 / 準遺伝的被覆 / 関手 / Hecke環 / 最高ウェイト圏 / 量子群 / 準遺伝的代数 / 準遺伝的 / 最高ウエイト圏 / 圏化 / ヘッケ環 / マッキー公式 / Hecke代数 / Cherednik代数 / 準遺伝被覆 / 代数解析的関手
Outline of Final Research Achievements

My main research theme is the representation theory of cyclotomic Hecke algebras and their covers. There is a joint research with Ming Fong on dominant dimensions of gendo-symmetric algebras, saying those dimensions are derived invariants. This work is very abstract. Not only this, but in the home country, cyclotomic Hecke algebras world, Kuwabara (Tsukuba), Wada (Shinshu) and myself constructed Mackey formulas on inductions and restrictions for cyclotomic Hecke algebras and O over rational Cherednik algebras. Near the closing year, I constructed the graded version of Robinson's formula in cyclotomic quiver Hecke algebras and I found the Mackey formula for Kazhdan-Lusztig cells as group elements.

Academic Significance and Societal Importance of the Research Achievements

表現論は、代数学、幾何学、解析学といって3大分野を横断するようにまたがり、数理物理にも応用される大切な研究分野である。主だって代数的Lie理論に属する表現論について成果をあげてきた。学術的には応用も多数あり、世界的に認知されている研究分野である。これらは基礎研究であって社会的意義を問うには時間が足りないと思われる。分かり易く表現論を比喩的に述べると高校化学で原子や分子といった最小単位を習うが、対称性が留まることができる空間をこれらと同様に原子にあたる最小単位や分子にあたるそれと分類し、全体はそれを並べたものであると理解する理論である。

Report

(7 results)
  • 2023 Annual Research Report   Final Research Report ( PDF )
  • 2022 Research-status Report
  • 2021 Research-status Report
  • 2020 Research-status Report
  • 2019 Research-status Report
  • 2018 Research-status Report
  • Research Products

    (23 results)

All 2024 2023 2022 2021 2019 Other

All Int'l Joint Research (12 results) Journal Article (2 results) (of which Int'l Joint Research: 1 results,  Peer Reviewed: 2 results,  Open Access: 1 results) Presentation (4 results) (of which Int'l Joint Research: 3 results,  Invited: 1 results) Remarks (3 results) Funded Workshop (2 results)

  • [Int'l Joint Research] Seoul National University(韓国)

    • Related Report
      2022 Research-status Report
  • [Int'l Joint Research] City University, London(英国)

    • Related Report
      2022 Research-status Report
  • [Int'l Joint Research] National University of Singapore(シンガポール)

    • Related Report
      2022 Research-status Report
  • [Int'l Joint Research] Virginia Tech(米国)

    • Related Report
      2022 Research-status Report
  • [Int'l Joint Research] City University, London(英国)

    • Related Report
      2021 Research-status Report
  • [Int'l Joint Research] National University of Singapore(シンガポール)

    • Related Report
      2021 Research-status Report
  • [Int'l Joint Research] Chinese Academy of Sciences(中国)

    • Related Report
      2021 Research-status Report
  • [Int'l Joint Research] Chinese Academy of Science(中国)

    • Related Report
      2020 Research-status Report
  • [Int'l Joint Research] 中国科学院(中国)

    • Related Report
      2019 Research-status Report
  • [Int'l Joint Research] National University of Singapore(シンガポール)

    • Related Report
      2019 Research-status Report
  • [Int'l Joint Research] 中国科学院(中国)

    • Related Report
      2018 Research-status Report
  • [Int'l Joint Research] シンガポール国立大学(シンガポール)

    • Related Report
      2018 Research-status Report
  • [Journal Article] ON THE MACKEY FORMULAS FOR CYCLOTOMIC HECKE ALGEBRAS AND CATEGORIES ℴ OF RATIONAL CHEREDNIK ALGEBRAS2021

    • Author(s)
      Toshiro Kuwabara, Hyohe Miyachi, Kentaro Wada
    • Journal Title

      Osaka Journal of Mathematics

      Volume: 58 Issue: 1 Pages: 103-134

    • DOI

      10.18910/78993

    • NAID

      120006998398

    • ISSN
      00306126
    • URL

      https://ocu-omu.repo.nii.ac.jp/records/2010814

    • Related Report
      2020 Research-status Report
    • Peer Reviewed / Open Access
  • [Journal Article] Hochschild cohomology and dominant dimension2019

    • Author(s)
      Fang Ming and Hyohe Miyachi
    • Journal Title

      Transactions of the American Mathematical Society

      Volume: 371 Issue: 8 Pages: 5267-5292

    • DOI

      10.1090/tran/7704

    • NAID

      40022147264

    • Related Report
      2019 Research-status Report 2018 Research-status Report
    • Peer Reviewed / Int'l Joint Research
  • [Presentation] Hecke 環における二つの相互律について2024

    • Author(s)
      宮地兵衛
    • Organizer
      有限群のコホモロジー論とその周辺(代表:池田 岳, 藤田 直樹)
    • Related Report
      2023 Annual Research Report
  • [Presentation] Hecke 環における二つの相互律について2023

    • Author(s)
      宮地兵衛
    • Organizer
      表現論の組合せ論的側面とその周辺(代表:飛田 明彦)
    • Related Report
      2023 Annual Research Report
    • Int'l Joint Research
  • [Presentation] On two reciprocities on Hecke algebras2022

    • Author(s)
      宮地兵衛
    • Organizer
      Representation Theory, Combinatorics and Geometry
    • Related Report
      2022 Research-status Report
    • Int'l Joint Research / Invited
  • [Presentation] Hochschild コホモロジーと支配的次元2019

    • Author(s)
      宮地 兵衛
    • Organizer
      RIMS共同研究 有限群のコホモロジー論とその周辺
    • Related Report
      2018 Research-status Report
    • Int'l Joint Research
  • [Remarks] Winter School on Koszul Algebra and Koszul Duality

    • URL

      https://ryokanda.net/conferences/koszul2021/?lang=ja

    • Related Report
      2021 Research-status Report
  • [Remarks] Researchmap

    • URL

      https://researchmap.jp/read0132976

    • Related Report
      2019 Research-status Report
  • [Remarks] Research map

    • URL

      https://researchmap.jp/read0132976/

    • Related Report
      2018 Research-status Report
  • [Funded Workshop] Integrable Systems and Quantum Groups In Honor of Masato Okado's 60th Birthday2023

    • Related Report
      2022 Research-status Report
  • [Funded Workshop] Winter School on Koszul Algebra and Koszul Duality2022

    • Related Report
      2021 Research-status Report

URL: 

Published: 2018-04-23   Modified: 2025-01-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi