• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Study of symplectic geometry combining geometric and categorical methods

Research Project

Project/Area Number 18K03269
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeMulti-year Fund
Section一般
Review Section Basic Section 11020:Geometry-related
Research InstitutionChiba University

Principal Investigator

Futaki Masahiro  千葉大学, 大学院理学研究院, 准教授 (40583927)

Project Period (FY) 2018-04-01 – 2024-03-31
Project Status Completed (Fiscal Year 2023)
Budget Amount *help
¥4,420,000 (Direct Cost: ¥3,400,000、Indirect Cost: ¥1,020,000)
Fiscal Year 2021: ¥1,300,000 (Direct Cost: ¥1,000,000、Indirect Cost: ¥300,000)
Fiscal Year 2020: ¥1,040,000 (Direct Cost: ¥800,000、Indirect Cost: ¥240,000)
Fiscal Year 2019: ¥1,040,000 (Direct Cost: ¥800,000、Indirect Cost: ¥240,000)
Fiscal Year 2018: ¥1,040,000 (Direct Cost: ¥800,000、Indirect Cost: ¥240,000)
Keywordsトーリック多様体 / SYZファイブレーション / モースホモトピー / 同変コホモロジー / 同変深谷圏 / 行列因子化 / SYZミラー / ホモロジー的ミラー対称性 / トーリック退化 / ファノ多様体 / フレアーホモロジー / 深谷圏 / ミラー対称性 / 行列分解 / ランダウ・ギンツブルク模型 / リュービル領域 / wrapped深谷圏 / Liouville領域 / シンプレクティック幾何 / コンタクトコホモロジー / ランダウ・ギンツブルグ模型
Outline of Final Research Achievements

We constructed a Morse homotopy category of the moment polytope in the case of the projective spaces, products of them and degree 1 Hirzebruch surface and gave a concrete description of the mirror functor from the DG category of holomorphic line bundles to the Morse homotopy category (joint work with Hiroshige Kajiura). This is a version of homotogical mirror symmetry based on the SYZ fibration.
We also defined an equivariant Fukaya category of the 1 dimensional projective space and 1 dimensional complex plane and saw that the curvature term recovers Givental's equivariant Landau-Ginzburg potential, and proved a version of equivariant homological mirror symmetry. We also found a new phenomenon which does not occur in the non-equivariant case (joint work with Fumihiko Sanda).

Academic Significance and Societal Importance of the Research Achievements

一つ目の研究については、トーリックファノ多様体のホモロジー的ミラー対称性に対し、正則直線束とラグランジュ切断のミラー対応をより明快に理解できる可能性を示した点が意義である。
二つ目の研究については、長らく実現されていなかったリー群同変な深谷圏の定式化を与えた事と、それを用いて基本的な例について同変版のホモロジー的ミラー対称性を示した事が意義である。研究の道筋は深谷-Oh-太田-小野による非同変の場合を踏襲しているが、同変化により非同変の場合には存在しなかった深谷圏の対象が現れるなど、新しい現象を見出した事が今後の研究のさらなる展開を示唆している事も意義である。

Report

(6 results)
  • 2023 Annual Research Report   Final Research Report ( PDF )
  • 2021 Research-status Report
  • 2020 Research-status Report
  • 2019 Research-status Report
  • 2018 Research-status Report
  • Research Products

    (12 results)

All 2024 2023 2022 2021 2020 2019

All Journal Article (3 results) (of which Int'l Joint Research: 1 results,  Peer Reviewed: 3 results) Presentation (8 results) (of which Int'l Joint Research: 5 results,  Invited: 2 results) Funded Workshop (1 results)

  • [Journal Article] Homological mirror symmetry of $\mathbb{F}_1$ via Morse homotopy2024

    • Author(s)
      Futaki Masahiro、Kajiura Hiroshige
    • Journal Title

      Advances in Theoretical and Mathematical Physics

      Volume: 26 Issue: 8 Pages: 2611-2637

    • DOI

      10.4310/atmp.2022.v26.n8.a5

    • Related Report
      2023 Annual Research Report
    • Peer Reviewed
  • [Journal Article] Equivariant homological mirror symmetry for C and CP12023

    • Author(s)
      Futaki Masahiro、Sanda Fumihiko
    • Journal Title

      Journal of Geometry and Physics

      Volume: 192 Pages: 104929-104929

    • DOI

      10.1016/j.geomphys.2023.104929

    • Related Report
      2023 Annual Research Report
    • Peer Reviewed
  • [Journal Article] Homological mirror symmetry of CPn and their products via Morse homotopy2021

    • Author(s)
      Futaki Masahiro、Kajiura Hiroshige
    • Journal Title

      Journal of Mathematical Physics

      Volume: 62 Issue: 3 Pages: 032307-032307

    • DOI

      10.1063/5.0029165

    • Related Report
      2020 Research-status Report
    • Peer Reviewed / Int'l Joint Research
  • [Presentation] Equivariant Homological Mirror Symmetry for CP^12023

    • Author(s)
      Masahiro Futaki
    • Organizer
      Pacific Rim Complex and Symplectic Geometry Conference 2023, Qingtian, China
    • Related Report
      2023 Annual Research Report
    • Int'l Joint Research / Invited
  • [Presentation] 1次元射影空間に対する同変ホモロジー的ミラー対称性2022

    • Author(s)
      二木昌宏, 三田史彦
    • Organizer
      日本数学会年会 幾何学分科会
    • Related Report
      2021 Research-status Report
  • [Presentation] モースホモトピーと射影空間に対するホモロジー的ミラー対称性2021

    • Author(s)
      二木昌宏、梶浦宏成
    • Organizer
      日本数学会2021年度年会
    • Related Report
      2020 Research-status Report
  • [Presentation] Introduction to the Fukaya-Seidel category and homological mirror symmetry for singularities2020

    • Author(s)
      Masahiro Futaki
    • Organizer
      Workshop on Singularities and Symplectic Geometry, Kyoto University
    • Related Report
      2019 Research-status Report
    • Int'l Joint Research
  • [Presentation] Equivariant homological mirror symmetry and partially wrapped Fukaya category2019

    • Author(s)
      Masahiro Futaki
    • Organizer
      RMS & IBS-CGP Joint Workshop, RIMS, Kyoto University
    • Related Report
      2019 Research-status Report
    • Int'l Joint Research
  • [Presentation] Homological mirror symmetry for the projective space and an equivariant version2019

    • Author(s)
      Masahiro Futaki
    • Organizer
      Mirror Symmetry and Related Topics 2019, Kyoto University
    • Related Report
      2019 Research-status Report
    • Int'l Joint Research
  • [Presentation] Coamoeba, dimer models and HMS in dimension 22019

    • Author(s)
      Masahiro Futaki
    • Organizer
      Tropical Geometry and Mirror Symmetry, The University of Melbourne
    • Related Report
      2019 Research-status Report
    • Int'l Joint Research / Invited
  • [Presentation] A Thom-Sebastiani type theorem for Fukaya-Seidel categories2019

    • Author(s)
      Masahiro Futaki
    • Organizer
      Mini workshop on Symplectic geometry and Mirror symmetry, Seoul National University
    • Related Report
      2018 Research-status Report
  • [Funded Workshop] Aspects of Mirror Symmetry in Chiba 20192019

    • Related Report
      2019 Research-status Report

URL: 

Published: 2018-04-23   Modified: 2025-01-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi