• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

wild behavior of partially hyperbolic dynamics and its smoothness

Research Project

Project/Area Number 18K03276
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeMulti-year Fund
Section一般
Review Section Basic Section 11020:Geometry-related
Research InstitutionDoshisha University (2020-2022)
Kyoto University (2018-2019)

Principal Investigator

Asaoka Masayuki  同志社大学, 理工学部, 教授 (10314832)

Project Period (FY) 2018-04-01 – 2023-03-31
Project Status Completed (Fiscal Year 2022)
Budget Amount *help
¥4,420,000 (Direct Cost: ¥3,400,000、Indirect Cost: ¥1,020,000)
Fiscal Year 2020: ¥1,560,000 (Direct Cost: ¥1,200,000、Indirect Cost: ¥360,000)
Fiscal Year 2019: ¥1,560,000 (Direct Cost: ¥1,200,000、Indirect Cost: ¥360,000)
Fiscal Year 2018: ¥1,300,000 (Direct Cost: ¥1,000,000、Indirect Cost: ¥300,000)
Keywords部分双曲力学系 / 分岐理論 / 微分可能力学系 / 双曲力学系 / 力学系理論 / 葉層構造 / 力学系 / カントール集合 / 保存系 / 分岐現象
Outline of Final Research Achievements

We found new examples which exhibit wild dynamical behaviors in partially hyperbolic dynamics and homoclinic tangency. In the mechanism generating wild behavior, higher differentiabiity and information of higher differential plays important roles. In the route to find such examples, we also found a pair of Cantor sets in higher dimension which exhibits C1-stable intersection. It is contrast to the one-dimensional case where no pair of Cantor sets exhibits C1-stable intersection. We also characterized R-coveredness of a three-dimensionaltopologically transitive Anosov flow by topological information of its Birkhoff section.

Academic Significance and Societal Importance of the Research Achievements

双曲性を初めとして,力学系の位相的な性質は主にその1階微分と関係づけられることが多かったが,本研究において高階微分が力学系の周期点の数の増大度という位相的な性質が2階,3階微分と密接に関係することが明らかになった.また,0次元の集合であるカントール集合が摂動しても交わり続けると安定交差という性質は,力学系の分岐理論においてこれまでも重要な役割を果たしてきたが,本研究ではこれまで知られいたものとは全く異なるメカニズムによる安定交差の例が構成され,その分岐理論への応用がなされた.3次元アノソフ流のR-covered性の特徴づけもアノソフ流の位相的性質の理解への応用が期待される.

Report

(6 results)
  • 2022 Annual Research Report   Final Research Report ( PDF )
  • 2021 Research-status Report
  • 2020 Research-status Report
  • 2019 Research-status Report
  • 2018 Research-status Report
  • Research Products

    (13 results)

All 2023 2022 2021 2020 Other

All Int'l Joint Research (5 results) Journal Article (2 results) (of which Int'l Joint Research: 1 results,  Peer Reviewed: 2 results) Presentation (5 results) (of which Invited: 3 results) Remarks (1 results)

  • [Int'l Joint Research] Universite de Bourgogne(フランス)

    • Related Report
      2022 Annual Research Report
  • [Int'l Joint Research] the Max Plank Institute(ドイツ)

    • Related Report
      2022 Annual Research Report
  • [Int'l Joint Research] Universite de bourgogne/L'institut Fourier(フランス)

    • Related Report
      2021 Research-status Report
  • [Int'l Joint Research] Imperial College London(英国)

    • Related Report
      2020 Research-status Report
  • [Int'l Joint Research] Imperial College London(英国)

    • Related Report
      2019 Research-status Report
  • [Journal Article] Stable intersection of Cantor sets in higher dimension and robust homo- clinic tangency of the largest codimension2022

    • Author(s)
      M.Asaoka
    • Journal Title

      Trans. Amer. Math. Soc.

      Volume: 375 Issue: 02 Pages: 873-908

    • DOI

      10.1090/tran/8452

    • Related Report
      2021 Research-status Report
    • Peer Reviewed
  • [Journal Article] Fast growth of the number of periodic points arising from heterodimensional connections2021

    • Author(s)
      Asaoka Masayuki、Shinohara Katsutoshi、Turaev Dmitry
    • Journal Title

      Compositio Mathematica

      Volume: 157 Issue: 9 Pages: 1899-1963

    • DOI

      10.1112/s0010437x21007405

    • Related Report
      2021 Research-status Report
    • Peer Reviewed / Int'l Joint Research
  • [Presentation] Goodman Fried surgery, Birkhoff sections, and R-covered Anosov flows2023

    • Author(s)
      浅岡 正幸
    • Organizer
      接触構造、特異点、微分方程式及びその周辺
    • Related Report
      2022 Annual Research Report
    • Invited
  • [Presentation] Goodman Fried surgery, Birkhoff sections, and R-covered Anosov flows2022

    • Author(s)
      浅岡 正幸
    • Organizer
      力学系の理論と諸分野への応用
    • Related Report
      2022 Annual Research Report
  • [Presentation] Goodman Fried surgery, Birkhoff sections, and R-covered Anosov flows2021

    • Author(s)
      浅岡 正幸
    • Organizer
      葉層構造論シンポジウム
    • Related Report
      2021 Research-status Report
    • Invited
  • [Presentation] Stable intersection of Cantor set2021

    • Author(s)
      浅岡 正幸
    • Organizer
      第16回代数解析幾何セミナー
    • Related Report
      2020 Research-status Report
    • Invited
  • [Presentation] Stable intersection of Cantor sets in higher dimensions2020

    • Author(s)
      浅岡 正幸
    • Organizer
      RIMS研究集会「数理科学の諸問題と力学系理論の新展開」
    • Related Report
      2020 Research-status Report
  • [Remarks] ArXiv: Oriented Birkhoff sections of Anosov flows

    • URL

      https://arxiv.org/abs/2212.06483

    • Related Report
      2022 Annual Research Report

URL: 

Published: 2018-04-23   Modified: 2024-01-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi